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ABSTRACT
Reverberation degrades signal quality and increases word error rates
in automatic speech recognition (ASR). Reverberation suppression
is, thus, a key component in listening enhancement devices and ASR
front end. The weighted prediction error (WPE) is a prominent and
effective method that gained popularity in recent ASR challenges.
The need for iterative optimization in WPE leads to high compu-
tational cost and instabilities for short signals. Neural net (NN)
supported WPE was proposed to alleviate these issues. However,
NN training requires parallel data, i.e., reverberant and “clean” (di-
rect sound plus early reflections) speech, which is not available in
general. We show that the supporting network can be trained ef-
ficiently, without any supervision, using reverberant speech only.
Consequently, adaptation to unseen environments is largely simpli-
fied. Network training involves the complete de-reverberation sys-
tem and relies on complex-valued back propagation. The experi-
mental validation confirms that, the proposed approach matches the
performance of the method with parallel training data both in terms
of perceptual quality and ASR word error rates.

Index Terms— reverberation, speech enhancement, neural net-
work, automatic speech recognition.

1. INTRODUCTION

Reverberation reduces speech quality and intelligibility by overlap-
masking and degrades ASR performance [1, 2]. The extensive lit-
erature on the topic outlines a range of general and application-
specific solutions. This section identifies several recently-proposed
approaches and establishes the context for our contribution in the
class of prediction-based methods.

Late reverberation (LR), i.e., reflections with long propagation
paths and low correlation with the direct signal, is most detrimen-
tal to performance. Among the earlier methods, efficient gain-based
spectral subtraction effectively reduced LR [3]. Spatial averaging,
and further enhancement using the estimated LR power spectrum
explored the advantages of multi-channel processing [4]. Sub-band
array parameter computation by maximizing the likelihood for cor-
rect recognition offered an ASR-tailored perspective [5].

More recently, the combination of Kalman filtering with auto-
regressive models showed promise for on-line applications [6], while
the effectiveness of non-negative models in approximating the room
transfer function (single channel) was validated in [7]. Sub-band
steady-state suppression reduced overlap-masking and enhanced
ASR performance [8].

A method to predict LR in sub-band frequency domain was pro-
posed in [9, 10]. Referred to as weighted prediction error (WPE), it
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rose to prominence in the context of the REVERB challenge due to
its effectiveness [11]. Variations and augmentations of the method
include: i) the recursive estimation of the prediction coefficients
(suitable for on-line applications) [12], ii) the optimal combination
with a beam-former [13, 14] and iii) performance enhancement by
modeling temporal correlations [15].

A shortcoming of WPE, in its original form, is the need for it-
erative estimation of the model parameters, which i) increases the
computational complexity and ii) degrades performance for short
signals. A work-around was proposed in [16], where by using a sup-
porting neural net (NN), estimates are conditioned on a large amount
of training data and a single pass is sufficient to achieve good per-
formance. An issue with this particular solution is the need for a
parallel training corpus comprising reverberant and “clean” speech.

The literature offers a number of examples (not specific to WPE)
where a supporting NN is trained jointly with the acoustic model
(AM) using a recognition-level criterion [17, 18, 19, 20, 21]. Joint
training with AM is attractive as it tailors the model parameters to
the ASR objective but requires supervision in the form of acoustic
labels. Furthermore, it produces complex designs that may be chal-
lenging to train and biases the enhancement method.

Specific to reverberation, NN-based enhancement is proposed in
[22, 23]. In both cases, parallel corpus comprising reverberant noisy
and clean speech is needed. A further parametrization in terms of
the reverberation condition to account for inter-frame correlations
is considered in [23]. Fine tuning of the de-reverberation NN from
[23], in an end-to-end configuration with an AM, is studied in [24].
ASR results show competitive performance for a single channel set-
up but also identify a fundamental challenge of NN-based enhance-
ment related to multi-channel processing.

Exploiting the specifics of the WPE model, we propose an un-
supervised approach to training the supporting NN without parallel
data or involving an AM. The resulting framework offers efficiency
and modularity. Use of a composite cost function comprising a dis-
tortion criterion and a penalty term provides an additional level of
control. We show that the proposed method matches the perfor-
mance achieved by use of parallel training data both in terms of
perceptual quality and ASR performance.

The remainder of this paper is organized as follows. Theory is
presented in Section 2. Method validation is summarized in Section
3 followed by conclusions in Section 4.

2. THEORY

The theoretical basis of the proposed method is presented next. A
brief summary of WPE gives the operational framework in Section
2.1. Eliminating the need for parallel training data in NN-supported
WPE is discussed in Section 2.2.
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Fig. 1: NN training for In-line WPE. Core WPE operations encased by a dashed box. On-line WPE training shown at the top.

2.1. Weighted prediction error - Vanilla WPE

The theoretical basis of WPE is discussed in depth in [10]. In short,
it is derived as the minimum variance estimator:

X̃ =

∫
XpX|Y (X|Y) dX, (1)

where upper-case letters represent complex spectrum and oblique
font denotes random variables. The conditional probability density
function is obtained through Bayes rule from:

pX|Y (X|Y) =
pY |X (Y|X) pX (X)∫
pY |X (Y|X) pX (X) dX

, (2)

where the source pX and the room acoustics pY |X models are
complex-valued distributions. Operating in the short-term Fourier
transform (STFT) domain offers computational efficiency. In ad-
dition, the de-correlating effect of the transform justifies the de-
reverberation of individual spectral bins.

The choice of an auto-regressive sound propagation model leads
to a moving-average expression for the conditional expectation in
eq. (1), giving the optimally de-reverbed spectrum:

X̃n, k,m = Yn, k,m −
D+L∑

t=D+1

gH
t, k,mYn−t, k (3)

= Yn, k,m − gH
k,mSn, k, (4)

where n = 1 . . N , k = 1 . .K and m = 1 . .M index frame,
frequency and target microphone channel respectively, g are the
filter coefficients, D is a delay preventing over-prediction and
L is the number of lags. D > 0 relaxes the estimation of the
source to that of the direct plus early reflections (ER) spectrum.
Yn−t, k =

[
Yn−t, k, 1 · · · Yn−t, k,M

]T are the delayed ob-
servations from all microphones for target frame n at frequency k.
Stacking these, over the L lags, into a single vector gives Sn, k. The
filter coefficients are obtained as:

gk,m =
(

Ωk,mSH
k

)−1

Ωk,mYH
k,m (5)

Ωk,m = SkDiag (Φk,m) , (6)

where Sk is the observation matrix over all N frames and vector
Φk,m =

[
|X1, k,m|−2 · · · |XN, k,m|−2

]
(see Figure 1).

The recursive dependence between g and X, seen from equations
(4) and (5), poses a problem. It is addressed by iteratively estimating
each of the two sets until convergence.

2.2. Neural-net supported WPE

Iterative estimation of g is avoided in On-line WPE by introducing a
supporting NN that predicts

∣∣∣X̂m

∣∣∣ [16]. NN training requires rever-
berant magnitude spectrum (MS) as input and “clean” (direct plus
ER) MS as the target. Numerical robustness is enhanced by operat-
ing in the log domain.

The parallel training data set-up is impractical as it requires
room impulse response measurements. We show here that the NN
can be trained successfully without “clean” targets or any additional
supervision.

WPE estimates the enhanced spectrum X̃m for uncorrelated LR
and “clean” spectrum. Low correlation and, consequently, effec-
tive de-reverberation is achieved due to the non-stationary nature of
speech. The enhanced MS |X̃m| and the NN prediction |X̂m| (see
Figure 1), are two estimates of the same random variable. The NN
can be trained to enhance the similarity of the two estimates using,
e.g., the cost function:

Od = ‖|X̃m| − |X̂m|‖2. (7)

Due to the non-convexity of the optimization problem for the
NN parameters, minimizing the cost from eq. (7) is not guaranteed
to match the performance from the parallel data case. We add a
penalty term biasing the solution towards lower enhanced spectral
variance, i.e., more aggressive dereverberation:

O = Od + δ‖|X̂m|‖2. (8)

This combination of a distortion criterion and a penalty term is mo-
tivated, in part, by the Lagrangian from prior art on intelligibility en-
hancement for reverberant environments [25]. Either |X̃m| or |X̂m|
can be used in the penalty term, but the latter offers an advantage in
terms of a shorter path for gradient back-propagation [26].

The complete set-up for training and evaluation of the proposed
model is illustrated in Figure 1. Unlike On-line WPE, the NN is
trained in line with the enhancement model and, in the following,
we refer to it as In-line WPE.

Optimizing the NN parameters for In-line WPE involves back-
propagation through the complex-valued operations of the core WPE
method. To facilitate the implementation and the identification of
stability caveats, we derive the backward pass corresponding to
the sub-graph with complex-valued operations from Figure 1 using
Wirtinger calculus [27, 28]. A summary is shown in Figure 2. Red
font in the forward pass indicates dependence on the NN parameters.
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Fig. 2: Operations from the forward and the backward passes corresponding to the complex-valued part of the computational graph.

A principled approach to determine δ is not presented at this
time. A solution can likely be derived by introducing an explicit
bound on the value of the predicted magnitude spectrum. We defer
this analysis to future work.

3. EXPERIMENTAL VALIDATION

System design and training is discussed in Section 3.1. Evaluation
results are presented in Section 3.2. Training of the supporting NN
and the AM for ASR experiments is based on the REVERB chal-
lenge official training set. Validation is performed using the real
evaluation set of REVERB [29]. All WPE variants are applied at the
utterance level.

3.1. System level considerations

The dereverberation system was implemented in TensorFlow [30].
To facilitate the evaluation and comparison to prior art, the support-
ing NN architecture from [16] is preserved. It consists of a single
long-short term memory (LSTM) layer with 500 units, followed by
two fully-connected layers with 2048 nodes each and rectified linear
unit (ReLU) activations. A final linear layer maps its input to a 257
dimensional output corresponding to the single-sided (log) magni-
tude spectrum. The input to the network comprises the center plus a
context of 10 (±5) frames.

The multi-channel training data was generated according to [16],
and is based on the REVERB challenge recipe for simulating rever-
berant data [29]. The “clean” speech for the parallel set-up is created
by truncating the impulse response 50 ms after the arrival of the di-
rect sound. To keep the training times low (for both On-line and
In-line WPE), channel one only was used as the target channel.

D = 5 frames was used for training the In-line WPE model
as it corresponds to 48 ms of prediction delay and facilitates a fair
comparison to On-line WPE (where the early reflections cut-off is
at 50 ms). At test time, both models used the commonly referenced
value of D = 3 frames [9, 16]. The number of filter coefficients L
in the single, two-channel and eight-channel cases was 40, 30 and
10 respectively.

Among the measures taken to stabilize the optimization process,
|X̂|2 is limited from below prior to computing its reciprocal value
[9, 16]. Using differentiable operations:

|X̂(lb)
n, k,m|

2 = α |X̂n, k,m|2 + (1− α) ε (9)

α = S
((
|X̂n, k,m|2 − ε

)
ξ
)
, (10)

where S denotes the sigma function, ξ is a parameter of S control-
ling its knee shape, ε is a small number and lb stands for lower-
bounded. ε = 1e − 5 and ξ = 0.1 were found to work well in
practice. Similarly, an upper-bound ensuring that the predicted (en-
hanced) power spectrum (PS) |X̂n, k,m|2 does not exceed the ob-
served value |Yn, k,m|2 is also considered. Both thresholds are part
of the computational graph. In addition, Sk is normalized prior to
computing the filter coefficients.

Momentum stochastic gradient descent (SGD) optimizer with
a weight of 0.9 was used for training. The initial learning rate of
0.0002 was decreased progressively in the course of refining the NN
parameter estimates.

3.2. Results

A summary of the experimental results is presented next. Validation
of the cost function is the topic of Section 3.2.1. Signal enhancement
metrics are discussed in Section 3.2.2 followed by ASR performance
in Section 3.2.3.

The convention used throughout the text to refer to the variations
of the proposed method is In-line followed by a letter (A, B or C)
and an index (1 or 2). The letter corresponds to the value of δ ∈
{0, 1/4, 2/3}. The index shows the number of microphone channels
in training. Thus, In-line C2 stands for In-line WPE using δ = 2/3
with two microphone channels available at training time. Elsewhere,
the number of channels refers to the test-time set-up.

3.2.1. Cost function validation

Signal dereverberation reduces the enhanced signal power, relative
to the observed one, by removing LR. More effective enhancement
is expected to achieve lower output power. A ranking of the In-line
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WPE variants, in terms of output power, is shown in Table 1. The
original signal (Un-enh.), Vanilla WPE, using three iterations as rec-
ommended in [16], and On-line WPE are included for completeness.

Table 1: Output signal power at the utterance level.

# mics One Two Eight
Un-enh. 24.1 - -

In-line A1 18.9 17.2 15.6
In-line A2 18.6 16.8 15.3

Vanilla 18.4 16.5 15.1
In-line B1 17.5 15.6 14.3
In-line B2 17.3 15.4 14.1
In-line C1 16.9 15.0 13.8
In-line C2 16.6 14.6 13.4

On-line 15.6 13.7 12.5

Given the considered range of values for δ in In-line WPE, it is
observed that increasing the weight of the penalty term reduces the
output signal variance. Moderate decrease in variance for a fixed
δ is observed as the number of training channels increases. This is
related to the decreasing value of |X̃|, which serves as an internal
target for NN training.

3.2.2. Signal enhancement

An instrumental single-ended measure, employed for the official
evaluation in the REVERB challenge, was used to evaluate the dere-
verberation effect [31]. The Speech-to-reverberation modulation
energy ratio (SRMR) scores for the real evaluation set of REVERB
(averages over the near and far conditions) are shown in Table 2.
The enhancement effect (for all methods) is clearly visible in the
increasing SRMR values. As expected, the multi-microphone set-up
outperforms the single-sensor performance. Interestingly, the metric
favors In-line WPE processing.

Table 2: Mean SRMR scores.

Processing Un-enh. Vanilla On-line In-line A1 In-line C2

# mics SRMR, ET Real, REVERB (far+near)
1 3.18 3.91 3.82 3.93 4.23
2 - 4.40 4.30 4.38 4.84
8 - 4.77 4.56 4.74 5.2

Perceptual quality was also evaluated with a listening test. Using
a comparative category rating (CCR) scale, ranging from −3 (much
worse) to 3 (much better), pairs of methods were compared blindly.
The subset of participating methods included the most and the least
aggressive In-line WPE variants according to Table 1, On-line WPE,
Vanilla WPE and the un-enhanced signal. Each comparison includes
In-line C2 and another method.

Forty utterances (the ones with the largest power gap between
In-line C2 and In-line A1) were pooled from the real evaluation set
of REVERB. This pre-selection criterion facilitates the evaluation.
Twenty utterances are then sampled to compare a pair of methods.
Thus, the total number of comparisons (per listener) was 80, giv-
ing an average test duration of 25 minutes. The presentation order
was randomized across and within the pairs. All eight microphone
channels were used for signal enhancement.

The average preference scores for eight listeners (see Figure 3)
indicate that the aggressive In-line C2 and On-line WPE are indistin-
guishable. In-line C2 is preferred over Vanilla WPE and In-line A1,
which is consistent with the ranking from Table 1 and Table 2. As
expected, the gain over the un-enhanced signal is most substantial.

On-line Vanilla In-line A
1 Un-enh.

C
C

R
  s

ca
le

0

1

2

p<1 p<1e-7 p<1e-15 p<1e-15

Fig. 3: Mean preference scores for In-line C2 WPE over reference
methods. Also shown are 95 % confidence intervals and p values.

3.2.3. ASR performance

A time delay neural network (TDNN) [32] acoustic model is trained
using the single channel simulated multi-condition training data
from REVERB (enhanced data is not included). The GMM-HMM
models are trained on the clean WSJ data and speaker adaptive
training models are used for generating the alignments. The 40 di-
mensional MFCC features are mean and variance normalized at the
speaker level. The TDNN is trained using a lattice-free MMI crite-
rion [33] following the CHiME5 recipe1 in KALDI [34]. A tri-gram
language model is used during recognition and dereverberation is
only applied on the test set.

Table 3: WER for the real test set of REVERB. The TDNN AM
model is trained on 40-dimensional MFCC features.

Processing Un-enh. Vanilla On-line In-line A1 In-line C2

# mics Data WER ET Real, REVERB

1
Far 23.1 18.8 19.0 18.7 18.8

Near 22.8 19.1 18.8 18.9 19.0
Mean 23.0 19.0 18.9 18.8 18.9

2
Far - 17.8 16.9 17.3 17.0

Near - 16.1 17.3 16.4 16.5
Mean - 17.0 17.1 16.9 16.7

8
Far - 15.8 15.9 15.7 15.4

Near - 15.7 15.4 15.3 15.1
Mean - 15.8 15.7 15.5 15.3

Word error rates (WER) are summarized in Table 3. The per-
formance for the un-enhanced signal and the enhanced versions is
on par with the results reported recently in [14]. Given the strong
back-end, variations in the results for the enhanced data are small.
In all cases recognition performance is significantly stronger for the
enhanced over the un-enhanced signals. As expected, recognition
performance improves with the number of microphones channels.
The aggressive mode of In-line WPE achieves a marginal gain over
On-line WPE for the multi-channel case. This observation is consis-
tent with the trends recorded in Table 2.

4. CONCLUSIONS

Effective neural-net supported de-reverberation, in the context of lin-
ear predictive models, is achieved through unsupervised learning.
The need for parallel training data or alignment information, for the
case of joint training with an acoustic model, is avoided. The pro-
posed model can be refined further by deriving a principled approach
to setting the value of the parameter controlling the aggressiveness
of the algorithm.

1https://github.com/kaldi-asr/kaldi/tree/master/egs/chime5/s5
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