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ABSTRACT

Naturally introduced perturbations in audio signal, caused by
emotional and physical states of the speaker, can significantly
degrade the performance of Automatic Speech Recognition
(ASR) systems. In this paper, we propose a front-end based
on Cycle-Consistent Generative Adversarial Network (Cy-
cleGAN) which transforms naturally perturbed speech into
normal speech, and hence improves the robustness of an ASR
system. The CycleGAN model is trained on non-parallel ex-
amples of perturbed and normal speech. Experiments on spon-
taneous laughter-speech and creaky voice datasets show that
the performance of four different ASR systems improve by
using speech obtained from CycleGAN based front-end, as
compared to directly using the original perturbed speech. Vi-
sualization of the features of the laughter perturbed speech
and those generated by the proposed front-end further demon-
strates the effectiveness of our approach.

Index Terms— Cycle-consistent GAN, laughter speech,
creaky speech, automatic speech recognition

1. INTRODUCTION

Performance of Automatic Speech Recognition (ASR) sys-
tems have seen significant jumps with the adoption of deep
learning techniques. Recently, ASR systems have been shown
to perform on par with human transcribers [1]. At the same
time, the use of voice assistants such as Siri, Google Assis-
tant, Amazon Alexa etc., have led to the wide use of ASR
systems in various day-to-day applications. However, recent
studies have shown that adversarial examples, generated by
either adding a small amount of noise or by modifying a few
bits of the audio signal, can be used to attack ASR systems to
generate a completely different output [2, 3], even though the
changes in the audio signal cannot be perceived by humans.
Similar to these artificial perturbations in the audio signal, nat-
ural perturbations in human speech may also have an adverse
effect on the performance of ASR systems. Natural perturba-
tions in speech can arise due to the psychological and physical
state of the speaker. Examples of naturally perturbed speech
include expressive speech containing different emotions such
as laughter, excitement, frustration, etc. and speech generated
with different voice qualities such as creakiness, breath, etc.

In this paper, we show that the performance of the state-
of-the-art deep neural network based ASR systems can sig-
nificantly degrade for speech colored either by emotion or
voice-quality. We show that these natural perturbations can
be handled by Cycle-consistent GANs (CycleGANs) [4], a
variant of Generative Adversarial Networks (GANs) [5] which
can learn distributions of data across different domains even
without a parallel corpus. The generator from our CycleGAN
model learns to filter out the natural perturbations in speech
and hence can be used as a front-end processor to improve the
robustness of ASR to natural perturbations. Interestingly, in ab-
sence of perturbations, the front-end processing does not affect
the ASR performance. The main contributions of this work
are (a) an analysis of the performance of state-of-the-art ASR
systems on naturally perturbed laughter and creaky speech, (b)
an approach to train a CycleGAN model to obtain a front-end
for transforming perturbed speech into normal speech, and (c)
an analysis of the proposed front-end and its effectiveness in
improving performance of state-of-the-art ASR systems.

The rest of the paper is organized as follows. Section 2 is
the related work followed by the detailed description of our
CycleGAN model in Section 3. Experiments and results are
presented in Section 4 followed by an analysis on the learned
transformation in Section 5 and the conclusion in Section 6.

2. RELATED WORK

Previous work have analyzed the effect of emotional speech on
ASR and shown significant degradation in the performance of
GMM-HMM-based ASR systems [6, 7]. They proposed adap-
tation of the acoustic and language models of the ASR system
to capture the variations exhibited by emotive speech, in order
to improve the ASR performance. As opposed to model adapta-
tion, we propose an approach based on transforming emotional
speech to normal speech. Recently, emotive-to-neutral speech
conversion has been achieved by modeling prosody-based fea-
tures [8]. But this approach requires a parallel corpus (i.e.,
same utterance spoken in neutral and with emotion), which
is very difficult to collect for spontaneous speech. Similarly,
GMM-HMM-based systems have been considered for synthe-
sizing creaky speech [9], but no previous work has considered
the conversion of creaky to neutral speech due to lack of a
parallel corpus of creaky and neutral speech.
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We propose a parallel-data-free approach to transform
speech perturbed with emotions and voice quality to normal
speech, based on CycleGANs [4]. CycleGAN was earlier used
for voice conversion without parallel-data [10]. Compared to
[10], our approach provides a front-end processor which can
add robustness to ASR on utterances perturbed with emotion
and voice quality. While [11] presented the initial results of
our approach, this paper presents the details of our CycleGAN
model, the training loss functions and additional experimental
results which further validate the performance of our approach.

3. PERTURBED SPEECH TO NORMAL SPEECH
TRANSFORMATION WITH CYCLEGANS

GANs consist of two different networks i.e., a generator G
and a discriminator D. Generator is used to generate the fake
samples G(z), that resemble a given data distribution X , by
taking random sample z from a prior distribution pz as input,
and the discriminator is used to discriminate fake samples
from real samples in the data X . Both, generator and discrimi-
nator are trained using an adversarial loss function [5]. GANs
have achieved impressive results in image generation [12],
image-to-image translation [13] and style transfer [14]. More
recently, unpaired image-to-image translation was successfully
learned by adopting a variant of GAN, called cycle-consistent
adversarial networks [4, 15]. We adopt the concept of Cycle-
GAN for performing the task of non-parallel speech-to-speech
emotion conversion.

We use a CycleGAN to model the transformation of per-
turbed speech features (x ∈ X) to normal speech features
(y ∈ Y ). The CycleGAN model architecture, considered in
this work, is motivated from [10]. A typical GAN tries to mini-
mize the adversarial loss Ladv(GX→Y (x), y) which measures
how far is the generated data GX→Y (x) from the target data y.
In case of perturbed speech to normal speech transformation
without parallel utterances, a typical GAN with only the adver-
sarial loss may not be able to preserve the context information
in the speech features. The CycleGAN model can handle this
using a pair of GANs with two adversarial loss functions and
an additional cycle consistency loss function.

The first adversarial loss, given as:

Ladv(GX→Y (x), y) (1)

corresponds to the forward mapping, which is the transforma-
tion from the perturbed speech to normal speech. The second
adversarial loss, given as:

Ladv(GY→X(y), x) (2)

corresponds to the inverse mapping, which transforms the
normal speech back to the perturbed speech.

The cycle consistency loss given as:

Lcyc =Ex ‖GY→X(GX→Y (x))− x‖1
+ Ey ‖GX→Y (GY→X(y))− y‖1 (3)

helps to preserve the context information, by ensuring that
normal speech can be reconstructed by the cascade of the
forward and inverse mapping generators and perturbed speech
can be reconstructed by the cascade of the inverse and forward
mapping generators, respectively.

In addition to the above mentioned losses, we also included
the identity-loss function [4], given as:

Lid = Ex ‖GY→X(x)− x‖1 + Ey ‖GX→Y (y)− y‖1 (4)

Lid was originally used for color preservation and we found
this loss to be crucial for maintaining the linguistic information
during conversion of speech.

The complete loss function (L) of our CycleGAN model
is given as:

L =Ladv(GX→Y (x), y) + Ladv(GY→X(y), x)

+λcyc Lcyc + λid Lid (5)

The cycle consistency loss Lcyc is scaled with a trade-of pa-
rameter λcyc whereas the identity-loss Lid is scaled with a
trade-of parameter λid.

The generator and discriminator networks in the Cycle-
GAN model consist of convolutional blocks. The generator
network consists a total of 9 convolutional blocks. These in-
clude one stride-1 convolution block, one stride-2 convolution
block, 5 residual blocks [16], one 1

2 -stride convolution block,
and one stride-1 convolution block. All convolution layers are
1-dimensional to preserve the temporal structure [17]. Simi-
lar to [18], gated linear units, which achieved state-of-the-art
performance in language and speech modeling, are used as an
activation function in the convolutional layers. We also used
the instance normalization, proposed for style-transfer in [14].
The discriminator network consists of 4 2-dimensional convo-
lutional blocks. Gated linear units were used as the activation
function for all the convolutional blocks. For the discriminator
network, we use a 6× 6 patch GAN [19, 20], which classifies
whether each 6× 6 patch is real or fake.

4. EXPERIMENTS AND RESULTS

We use two spontaneous speech datasets, namely, AMI meet-
ing corpus [21] and Buckeye corpus of conversational speech
[22] to analyze the effect of natural perturbations. Both these
datasets consist of manual annotations and time-stamps for
speech perturbed with emotions and voice-quality. From both
these datasets, speech data comprising of 40 female speak-
ers and 30 male speakers was considered for training gender-
dependent CycleGAN models. We consider 210 utterances for
each gender and for each class (i.e., normal speech, laughter
speech and creaky speech). Out of these 210 utterances, 150
utterances are used for train and 60 utterances for test. It is
to be noted that all these utterances are non-parallel. Each
utterance is of 1-2 second in duration.
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Table 1: ASR performance without front-end (no FE) and with front-end (FE). Numbers in parenthesis with ↓ denote reduction
in the error rate.

Google IBM ASpIRE

no FE FE no FE FE no FE FE
MFBs MFBs+APs MFBs MFBs+APs MFBs MFBs+APs

Laughter- %WER 38.4 30.9 23.5 (14.9↓) 50.4 49.6 42.4 (8.0↓) 53.5 45.1 32.5 (21.0↓)
Speech %SER 91.8 79.6 75.5 (16.3↓) 93.1 89.7 89.7 (3.4↓) 93.1 91.4 89.7 (3.4↓)
Creaky- %WER 27.4 22.9 16.4 (11.0↓) 29.2 24.3 21.3 (7.9↓) 32.2 30.2 24.3 (7.9↓)
Speech %SER 86.1 77.8 63.9 (22.2↓) 88.9 86.1 86.1 (2.8↓) 94.4 91.7 83.3 (11.1↓)

The WORLD vocoder system [23] is used to extract fea-
tures from the speech signal. The speech signal is sampled
at 16 kHz, and Mel filterbank (MFB) features, logarithmic
fundamental frequency (log F0) and aperiodic components
(APs) are extracted within a window of length 20 msec for
every 5 msec. 24-dimensional MFBs and 24-dimensional APs
are modeled by the proposed CycleGAN architecture to con-
vert the features extracted from the input perturbed speech
into the features corresponding to normal speech. Previous
work on speaker conversion [24, 10], have used only the spec-
tral features (MFBs). But for perturbed speech conversion,
we found that modeling both, spectral features (MFBs) and
aperiodic components (APs) resulted in better conversion to
normal speech than considering only spectral features (MFBs).
Logarithm Gaussian normalized transformation [25] was used
to convert the F0 values from the source speech to those corre-
sponding to the target speech.

In order to achieve a more stable training of the CycleGAN
models and to generate higher quality outputs, we used the
least square function to compute the adversarial loss instead of
the commonly used negative log likelihood objective function
[26, 4]. The CycleGAN models were trained using the Adam
optimizer with a batch size of 1. The initial learning rates
of the generator and the discriminator are 0.0002 and 0.0001,
respectively. The learning rates were decayed by a factor
of 105 after each epoch. In all the experiments, the cycle
consistency loss trade-of parameter λcyc was set to a value of
10. The identity-loss trade-of parameter λid was set to 1 for
the first 100 epochs and set to 0 after 100 epochs.

Table 1 presents the performance of Google cloud ASR1,
IBM ASR2 and Kaldi ASR (with ASpIRE models) [27, 28]
with and without our proposed front-end, when tested with
laughter speech (speech perturbed with emotion) and creaky
speech (speech perturbed with voice-quality). The perfor-
mance is evaluated in terms of % Word Error Rate (%WER)
and % Sentence Error Rate (%SER). Lower values of WER
and SER indicate better performances. Table 1 shows that our
proposed front-end improves the performance of each of the
ASR systems. It can be observed that modeling both, spectral

1https://cloud.google.com/speech-to-text/
2https://www.ibm.com/watson/services/speech-to-text/

Table 2: DeepSpeech model performance without front-end
(no FE) and with front-end (FE) in terms of character error
rate (%CER). Numbers in parenthesis with ↓ denote reduction
in the error rate.

no FE FE
Perturbation MFBs MFBs+APs

Laughter speech 56.5 53.0 41.7 (14.8↓)
Creaky speech 33.5 29.8 23.7 (9.8↓)

and aperiodic components (i.e., MFB + APs) performs better
than modeling only MFBs in the proposed front-end.

The ASR performances shown in Table 1 are influenced
by the strength of the language model used by the respective
ASR systems. To check ASR performance without the effect
of a language model, we also present the results from the
DeepSpeech model3 which converts speech to a sequence of
English characters. Table 2 shows the % Character Error
Rate (%CER) performance of the DeepSpeech model with and
without the proposed front-end. The DeepSpeech model was
trained on 1000 hours of LibriSpeech data and did not use a
language model for decoding. It can be observed from Table 2
that our proposed front-end gives significant reduction in CER
of the DeepSpeech model.

5. ANALYSIS OF THE LEARNED FRONT-END
TRANSFORMATION

Figure 1 shows a 2-dimensional t-SNE projection [29] of the
Mel filterbank features for (a) normal speech, (b) laughter
perturbed speech [30] and (c) laughter perturbed speech trans-
formed to normal speech by the proposed front-end. It can
be observed that the filterbank features for normal speech and
transformed (normal) speech are quite similar to each other
and that they differ significantly from the filterbank features
for laughter speech. Additionally, the spread of the filterbank
features for laughter speech is reduced in the 2-dimensional
t-SNE space. We hypothesize that this may be due to the
reduction in vowel space for laughter speech [31].

3https://github.com/mozilla/DeepSpeech/releases/tag/v0.4.0-alpha.3
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(a) Normal Speech (b) Laughter Perturbed Speech (c) Transformed (Normal) Speech

Fig. 1: t-SNE projection of Mel filterbank output features (Best viewed in color).

Fig. 2: Violin plot of output from filters 1 to 8 of the Mel
filterbank (Best viewed in color).

For a more detailed analysis, Figure 2 shows violin plots
[32] of the output of the filters 1 to 8 of the Mel filterbank,
for normal speech, laughter perturbed speech and laughter
perturbed speech transformed to normal speech. Output of the
filters 9 to 24 do not show visible differences and hence they
are not shown. It can be observed from Figure 2 that the distri-
bution of the feature values for normal speech and transformed
(normal) speech are similar and they exhibit similar variations.
It implies that the front-end is able to (a) capture the distribu-
tion of the Mel filterbank outputs of both normal and laughter
perturbed speech, and (b) transform laughter perturbed speech
to equivalent normal speech.

6. CONCLUSION

We proposed a novel front-end based on CycleGANs to trans-
form naturally perturbed speech to normal speech. Experi-
ments on spontaneous laughter speech and creaky voice ut-
terances show significant improvements in performance of
the Google ASR, IBM ASR, the Kaldi ASR with ASpIRE
model and that of a DeepSpeech model. We found that adding
aperiodic components to spectral features gives a better perfor-
mance. Visualization of the laughter speech features and the
transformed speech features gives insights on the transforma-
tion performed by our proposed front-end.
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