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ABSTRACT

Despite the success of deep learning in speech recognition, multi-
dialect speech recognition remains a difficult problem. Although
dialect-specific acoustic models are known to perform well in gen-
eral, they are not easy to maintain when dialect-specific data is scarce
and the number of dialects for each language is large. Therefore, a
single unified acoustic model (AM) that generalizes well for many
dialects has been in demand. In this paper, we propose a novel acous-
tic modeling technique for accurate multi-dialect speech recognition
with a single AM. Our proposed AM is dynamically adapted based
on both dialect information and its internal representation, which
results in a highly adaptive AM for handling multiple dialects simul-
taneously. We also propose a simple but effective training method
to deal with unseen dialects. The experimental results on large scale
speech datasets show that the proposed AM outperforms all the pre-
vious ones, reducing word error rates (WERs) by 8.11% relative
compared to a single all-dialects AM and by 7.31% relative com-
pared to dialect-specific AMs.

Index Terms— Acoustic modeling, multi-dialect speech recog-
nition, adaptation

1. INTRODUCTION

Every language has variations in terms of pronunciation. For ex-
ample, English spoken by a native speaker is different from the one
spoken by a non-native speaker, e.g., an Asian. Therefore, an acous-
tic model (AM) trained with speech data from only native speakers
often fails to recognize speech from non-native speakers. An effec-
tive approach to dealing with multi-dialect speech recognition is to
train a dialect-specific AM for each dialect [1]. Although it performs
well in general, one disadvantage is that a separate AM needs to be
maintained for each dialect, which increases operational cost. Thus,
there have been demands for a single AM that can be used to recog-
nize many dialects accurately.

A straightforward way to build a single AM for multiple dialects
is to train the model on mixed data from many dialects. Although
such an AM usually underperforms dialect-specific AMs, it can be
used as a good starting point and hence is commonly considered as
the baseline model in the literature [1, 2, 3, 4]. Recently, there have
been many attempts to improve the single AM approach for multi-
dialect speech recognition. One such approach is based on multi-
task learning, where an AM is trained to not only predict phonemes
but also identify dialects [1, 2, 5, 6]. There are other approaches
that provide the AM with an auxiliary input such as i-vectors [7] or
dialect information to make it adaptive to different dialects [2, 3, 6].
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Feature-wise Linear Modulation (FiLM) is a recently introduced
adaptive neural network modeling technique [8, 9, 10, 11]. By ap-
plying feature-wise transformations based on an auxiliary input, it
enables neural networks to effectively adapt to multiple sources of
information in a large set of problems [11]. Although FiLM was
originally proposed for a visual QA problem [8, 9, 10], it is a gen-
eral approach and hence can also be applied to acoustic modeling.

In this paper, we propose a novel approach to building a single
AM for multi-dialect speech recognition. Motivated by FiLM, we
apply feature-wise transformations to the AM based on dialect infor-
mation. However, unlike the original FiLM architecture that adapts
neural networks based on only external input, we also use internal
representation extracted within the network as additional condition-
ing information. Using the combination of both external and inter-
nal information in feature-wise transformations makes our AM more
adaptive and able to deal with multiple dialects more effectively. We
also propose a simple but effective training method to handle unseen
dialects during training. Through experimental evaluation on large
scale speech datasets, we show that our proposed AM outperforms
all the previous ones in terms of WERs.

The rest of this paper is organized as follows. First, Section
2 discusses past research related to this work. Section 3 describes
our proposed AM that is adapted by both dialect information and
internal representation. Section 4 shows the experimental results,
and Section 5 concludes the paper.

2. RELATED WORK

The traditional approach to dealing with multi-dialect speech is to
build a different AM per dialect as if each dialect is a different lan-
guage [1]. However, when dialect-specific data is scarce, such a
dialect-specific AM underperforms even a single AM trained with
data from all dialects [5]. This is because a dialect-specific AM
is not able to learn similarities between different dialects. To deal
with such a resource-scarcity problem, there are some approaches
that jointly train dialect-independent parts of an AM with data from
all dialects and separately train dialect-dependent parts with dialect-
specific data [3, 5, 12]. In other approaches, dialect-specific AMs
are obtained simply by training a single AM using all available data
first and then fine-tuning it on dialect-specific data [2]. However, the
main drawback of these methods is that they all need to maintain
several models for a given language, which incurs high maintenance
cost especially when speech recognition service is provided for many
languages and dialects [1].

A single AM for all dialects has merit in terms of maintenance
cost, and hence there have been many attempts to improve its per-
formance. Some of them are based on multi-task learning [1, 2, 5, 6]
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where an AM is trained to predict phonemes as well as classify di-
alects. However, it is not easy to train such a model because deciding
the weights given to two different tasks is not straightforward [5].
Other approaches use an auxiliary input such as i-vectors or dialect
information [2, 3, 6]. [2] proposes to provide dialect information as
an additional input of an end-to-end speech recognition model, and
[6] proposes to use utterance-level dialect embedding extracted from
a dialect classifier. It has been shown that they outperform dialect-
specific models [2].

Conditioning is an effective method for adaptive neural net-
work modeling. [13] shows that conditional instance normalization,
which dynamically generates the scaling and shifting parameters
in instance normalization, can transfer styles of images succinctly.
Motivated by this work, [4] proposes to dynamically generate the
parameters in layer normalization [14] for speaker adaptation. Later,
a general-purpose conditioning approach called Feature-wise Linear
Modulation (FiLM) is proposed [8, 9, 10, 11]. In this approach,
special layers called FiLM layers are inserted into the network, and
each such layer applies feature-wise affine transformations to its
input as follows:

x̂ = γ � x+ β

where � indicates pointwise product of vectors, x is a FiLM layer’s
input vector, and γ and β are the scaling and shifting vectors that
are dynamically generated based on an auxiliary input. Although
FiLM is proposed to solve a visual QA problem, such feature-wise
transformations can also be applied to solve a diverse set of prob-
lems [11]. However, to the best of our knowledge, there has been no
work that uses FiLM for multi-dialect speech recognition. In this pa-
per, we examine how FiLM can be applied to acoustic modeling for
accurate multi-dialect speech recognition and propose an improved
network architecture.

3. MULTI-DIALECT ACOUSTIC MODELING

3.1. Baseline Acoustic Models

All AMs considered in this paper use a uni-directional recurrent neu-
ral network with LSTM layers followed by a softmax layer. We ap-
ply batch normalization to the input of each LSTM layer as in [15]
and also add a lookahead convolutional layer [16] after each LSTM
layer to provide the model with some future context. We call this ba-
sic AM that does not take any dialect information a dialect-unaware
AM. Then, we obtain dialect-specific AMs by fine-tuning the dialect-
unaware AM with data from the corresponding dialect. Our third
baseline AM is to take dialect information as an additional input
[2, 6, 17]. As in [2], dialect information is represented as a one-hot
vector and concatenated with the other input features1. We call this
model a dialect-aware AM.

3.2. Conditioning with External Information

The FiLM architecture can be applied to acoustic modeling for mul-
tiple dialects by using dialect information as a conditioning input.
Based on this conditioning information, the scaling and shifting pa-
rameters for feature-wise affine transformations, γ and β, are dy-
namically generated. If dialect information d is represented as a D-
dimensional one-hot vector where D is the number of dialects, the γ
and β for all layers can be generated at once as follows:

ac = tanh(Wc(tanh(Wdd+ bd)) + bc)

1Although the dialect information can be added to the input of every layer,
there is not much difference in performance in our experiments.

(a) The γ and β parameters generated based on dialect information
(left), utterance summarization (center), or both (right).

(b) Conditioning applied to each layer’s input (left) or output (right).

Fig. 1: Illustration of (a) three kinds of conditioning information and
(b) two different conditioning positions.

(γ1, ...γL) = tanh(Wγac+bγ), (β1, ...βL) = tanh(Wβac+bβ),

where L is total number of LSTM layers, W s are weight matrices,
and b’s are bias terms. This is shown on the left picture in Fig. 1a.

The generated γ and β parameters are applied to either the input
of each LSTM layer after batch-normalization (as shown on the left
picture in Fig. 1b) or the output of each layer after activation (as
shown on the right picture in Fig. 1b).

3.3. Conditioning with Internal Representation

[4] shows that an AM dynamically adapted based on the hidden rep-
resentation of each layer performs well in speaker adaptation. Their
method can also be applied to multi-dialect speech recognition. Sim-
ilar to [4], we attach a separate utterance-level feature extractor net-
work to each layer and jointly train it with the main AM. The feature
vector al−1

s , called utterance summarization of (l − 1)-th layer, is
extracted as follows:

al−1
s =

1

T

T∑
t=1

tanh(W l−1
s hl−1

t + bl−1
s ),

where T is the number of total frames in the utterance, and hl−1
t is

the output of the (l − 1)-th hidden layer at time step t (h0
t is the

input features xt). W l−1
s and bl−1

s are the weight matrix and bias
term, respectively. We apply one more non-linear transformation
before parameter generation. Therefore, the γl and βl at layer l are
generated as follows:

alc = tanh(W l
ca
l−1
s + blc)

γl =W l
γa
l
c + blγ , βl =W l

βa
l
c + blβ ,

where W ls are weight matrices, and bls are bias terms. This method
is depicted on the center picture in Fig. 1a.

3.4. Conditioning with External and Internal Information

Finally, we propose to use not only dialect information and but also
utterance summarization in parameter generation. Conditioned by
both external input and internal representation at the same time, an
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Table 1: The statistics of various datasets in terms of the number of
utterances. (The numbers in parentheses refer to hours.)

Speaker Training set Speaker Training set
Native 281,241 (960) Chinese 73,413 (131)

German 55,836 (74) Spanish 75,762 (102)
French 47,881 (59) Italian 43,863 (57)

Portuguese 35,933 (46) Korean N/A (N/A)

AM can be more adaptive in dealing with multiple dialects simulta-
neously than models described above.

First, a one-hot vector indicating the dialect is transformed into
a hidden representation ald and concatenated with utterance summa-
rization of the previous layer. Then, it is fed into another non-linear
layer to make the final conditioning representation alc as follows:

ald = tanh(W l
dd+ bld)

alc = tanh(W l
c(a

l
d ⊕ al−1

s ) + blc),

where d is a one-hot vector representing the dialect, al−1
s is the ut-

terance summarization of (l − 1)-th layer, which is introduced in
Section 3.3. The symbol ⊕ indicates the concatenation operation.
The γl and βl at l-th layer are generated based on this conditioning
representation alc as shown on the right picture in Fig. 1a:

γl =W l
γa
l
c + blγ , βl =W l

βa
l
c + blβ .

As before, W s and b’s indicate the weight matrices and bias terms.

3.5. Unseen Dialect Handling

One limitation of our model is that users always need to provide di-
alect information. Therefore, even for users speaking unseen dialects
during training, one dialect (usually native) must be chosen, which
may result in performance degradation. Using a dialect classifier
might be one solution [5, 6], but it makes the overall performance
largely dependent on the classification accuracy. In this paper, we
handle the unseen dialect problem by simply adding one more di-
alect, called unknown. During training, utterances randomly sam-
pled with a certain probability (e.g., 0.1) are treated as if they were
from the unknown dialect. At test times, users speaking unseen di-
alects are considered to use the unknown dialect and conditioning
representation is generated accordingly.

4. EXPERIMENTAL RESULTS

4.1. Datasets

We evaluate the models described above on large vocabulary speech
recognition datasets, which are English speeches spoken by users
of 8 different dialects including native, Chinese, German, Spanish,
French, Italian, Portuguese, and Korean. For the native speech data,
we use 960 hours of speeches from the LibriSpeech corpus [18].
For the nonnative speech data, we use the commercial datasets from
Speech Ocean [19]. Among these, the Korean English dataset is
not used during training for the ablation test. The statistics of each
dataset are shown in Table 1. Note that nonnative datasets are much
smaller than the native one, which is a common setting in multi-
dialect speech recognition.

In all experiments, we use 80-dimensional log-mel features,
computed with a 25ms window and shifted every 10ms. We follow
the standard Kaldi recipe s5 [20] for preparing data.

(a) Using utterance summarization only.

(b) Using both dialect information and utterance summarization.

Fig. 2: γ and β parameters for the input of the first layer (left) and the
last layer (right) generated based on the corresponding information,
plotted using t-SNE in 2D-space. Each color represents each dialect.

4.2. Network Architectures

We evaluate 10 different architectures in our experiments as shown
in Table 2. All AMs considered in the experiments have 4 uni-
directional LSTM layers, each of which has 640 LSTM units. Dur-
ing training, the mini-batch size is set to 320, and the Adam opti-
mizer [21] is used with the initial learning rate 0.1 and learning rate
scheduling is applied.

M1 - M3 are the baseline models. M1 is the dialect-unaware
model, which is trained with data from all dialects except Korean
English. M2 indicates the dialect-specific models, i.e., seven mod-
els trained by fine-tuning M1 on data from corresponding dialects.
M3 is the dialect-aware model that takes dialect information as an
additional input.

M4 - M10 are AMs conditioned on dialect information (D-Info),
utterance summarization (Utt-Sum), or both (Both). As indicated by
the second column of Table 2, M4 - M6 apply feature-wise transfor-
mations to the input of each layer, and M7 - M10 apply them to the
output. Although these two groups take the same information, M7
- M10 generate a smaller number of γ and β parameters than M4 -
M62, and hence the model sizes are reduced as shown on the third
column in the table.

M4 and M7 are conditioned on only dialect information and use
64 hidden units for dialect representation. Similarly, M5 and M8 are
conditioned on only utterance summarization and also use 64 hid-
den units for dialect representation. M6, M9, and M10, conditioned
on both information, use 32 hidden units for each representation and
then concatenate them together. In all cases, another fully-connected
layer with 64 hidden units is located on top of the representation to
make the final conditioning representation (the upper boxes in Fig.
1a). M10 is the model using our unseen dialect handling technique

2The number of parameters for the input is four times larger than that for
the output because an LSTM unit has three gates and one cell, and each one
has an input.
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Table 2: The performance comparison among 10 different AMs in terms of WERs (%) for Native, Chinese (CHI), German (GER), Spanish
(ESP), French (FRN), Italian (ITA), Portuguese (POR), and Korean (KOR) Ensligh. Since KOR is treated as the unseen dialect during training,
there are two different overall WERs, -KOR and +KOR, which indicate that KOR is removed from or included in test cases, respectively.

Models WER

Description Cond.
Pos.

Size
(M) Nat CHI GER ESP FRN ITA POR KOR Overall

-KOR +KOR
[M1] Dialect-unaware

N/A
15.44 5.93 29.40 19.36 21.54 17.96 15.47 15.96 30.30 15.87 17.39

[M2] Dialect-specific 15.44 5.79 28.32 18.00 20.36 16.98 14.86 15.16 33.20 15.12 17.24
[M3] Dialect-aware 15.46 5.95 28.51 18.51 20.55 17.33 14.96 15.17 37.70 15.33 17.69
[M4] Cond. on D-Info

Input
16.76 5.87 26.68 17.95 20.06 16.54 14.60 14.91 38.14 14.80 17.26

[M5] Cond. on Utt-Sum 16.90 5.96 27.69 18.06 20.46 17.87 15.10 15.38 29.04 15.28 16.73
[M6] Cond. on Both 16.84 5.91 26.31 17.39 19.63 16.63 14.55 14.27 36.79 14.58 16.92
[M7] Cond. on D-Info

Output

15.78 6.00 27.78 18.61 20.54 16.93 15.00 15.24 37.01 15.24 17.54
[M8] Cond. on Utt-Sum 15.92 5.92 27.27 17.89 20.13 17.46 14.68 15.30 29.22 15.05 16.54
[M9] Cond. on Both 15.86 5.87 26.14 17.12 19.37 16.65 14.07 14.37 37.96 14.44 16.92
[M10] Cond. on Both + Unk-D 15.86 5.80 26.61 16.76 19.48 16.92 14.31 14.36 28.51 14.51 15.98

(Unk-D) described in Section 3.53. With a probability of 0.1, this
model treats an utterance as the one coming from the unknown di-
alect.

4.3. Results

The Word Error Rates (WERs) of different AMs over various di-
alects and overall WERs are shown on the corresponding columns
in Table 2. As we do not use Korean English at training time for the
ablation test, the overall WERs are differently calculated according
to whether Korean English is removed from or included in test cases.

M1 is our baseline and its WERs for other dialects are much
higher than that for the native one, so we can see that the charac-
teristics of the native speech are different from those of the other
dialects. The performance of M2 is improved for all dialects except
for Korean English, which is handled by the native English model
that is more tuned to the native English than M1. Feeding dialect
information as input vectors seems effective, as also shown in [2],
because M3 outperforms M1 and is competitive with M2.

M4 is the model that applies feature-wise transformations to the
input of each layer based on only dialect information. This model
outperforms even M2 with a 6.74% relative WER reduction, which
indicates that feature-wise transformations are effective.

M5 is the AM adapted by only utterance summarization, which
is similar to the model proposed in [4]. Although it underperforms
M4, its performance is competitive with M2 or M3. Moreover, its
performance for the unseen dialect case is better than that of M1.
This means that internal representation plays an important role to
make an AM adaptive to multiple dialects. To show how different
the γ and β parameters are depending on the dialect, we visualize
them by using t-SNE [22] in Fig. 2a. Although no dialect infor-
mation is given to the model, the parameters tend to be clustered
according to the dialect, especially in the higher layers. This shows
that conditioning information based on utterance summarization is
able to catch dialect-specific aspects well.

M6 is the AM conditioned on both dialect information and utter-
ance summarization. The overall WER is reduced by 3.57% relative
compared to M2 when Korean English test cases are not considered.
When we compare M6 with the single baseline AM, M3, the overall

3We assume that all models except M10 treat Korean English as the native
one due to the reason described in Section 3.5.

WER is reduced by 4.89% relative. Fig. 2b shows the visualiza-
tion of γ and β parameters generated in M6. We can see that they
are more strongly clustered by dialects, compared to those from M5.
Similar to M5, the parameters in the higher layers seem to be more
related to dialect-specific information.

M7 - M9 are equivalent to M4 - M6, respectively, except that
these models apply feature-wise transformations to the output of
each layer. Both of M7 and M8 show competitive performance
with M2 or M3. Unlike M4, using only dialect information does
not obtain better performance than the baseline models. However,
M9, which uses the combination of dialect information and utter-
ance summarization is superior to all the other AMs in terms of the
overall WER. Compared to M2, the WER is reduced from 15.12% to
14.44% (4.50% relative). Moreover, it even outperforms M6 despite
its smaller model size, which shows that the output of the layer is a
better place to apply conditional transformations.

Finally, M10 is M9 with the unseen dialect handling technique
applied. Although M10 performs similarly as M9 for all known di-
alects, it performs the best for Korean English, which is unseen dur-
ing training. If Korean English is considered, the overall WER is
reduced from 17.24% to 15.98% (7.31% relative), compared to M2.
As a single AM for all dialects, the overall WER is reduced by 8.11%
relative and 9.67% relative, compared to M1 and M3, respectively.

5. CONCLUSION

In this paper, we propose a highly adaptive AM for accurate multi-
dialect speech recognition. Unlike previous work, our AM is condi-
tioned on both dialect information and internal representation. We
also propose a simple but effective method for handling unseen di-
alects. We show through experimental evaluation that our proposed
AM is a single model with low maintenance cost that outperforms
all the previous AMs for multi-dialect speech recognition.

As future work, we plan to apply our proposed highly adap-
tive acoustic modeling technique to end-to-end speech recognition.
Since end-to-end speech recognition models contain both the acous-
tic and language models, we expect that each part can benefit from
our proposed technique.
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