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ABSTRACT
Speaker adaptation techniques play a key role in reducing the mis-
match between speech recognition systems and target users. In
order to robustly learn speaker-dependent adaptation parameters,
model based DNN adaptation techniques often require a signifi-
cant amount of data. For example, in the commonly used learning
hidden unit contributions (LHUC) based DNN adaptation, speaker-
dependent high-dimensional hidden layer output scaling vectors are
used. When limited adaptation data are available, the standard L-
HUC is prone to over-fitting and poor generalization. To address
the issue, Bayesian learning of hidden unit contributions (BLHUC)
is proposed in this paper. A posterior distribution over the LHUC
scaling vectors is used to explicitly model the uncertainty associated
with the adaptation parameters. An efficient variational inference
based approach is adopted to estimate the LHUC parameter pos-
terior distribution. Experiments conducted on a 300-hour Switch-
board setup showed that the proposed BLHUC method outperformed
the baseline speaker-independent DNN systems and LHUC adapted
DNN systems by up to 1.4% and 1.1% absolute reductions of word
error rate respectively, when only using 1 utterance of adaptation da-
ta from each speaker. Consistent performance improvements were
also obtained over the baseline, LHUC adapted and LHUC SAT sys-
tems when increasing the amount of adaptation data.

Index Terms— Bayesian learning, LHUC, speaker adaptation

1. INTRODUCTION

Speaker adaptation techniques play a vital role in speech recogni-
tion systems to reduce the mismatch against target users. For current
deep neural network (DNN) based speech recognition systems,
three categories of speaker adaptation methods can be used. In aux-
iliary input feature based DNN adaptation techniques, such as i-
vectors [1, 2, 3], speaker codes [4, 5, 6], and bottleneck features [7],
speaker-dependent (SD) characteristics are encoded in a compact
vector used to facilitate model adaptation. Inspired by the speaker
cluster based adaptation techniques originally proposed for GMM-
HMM systems [8], interpolation based DNN adaptation methods
with multiple basis of sub-network hidden outputs have been pro-
posed [9, 10]. Model based DNN speaker adaptation techniques di-
rectly estimate SD parameters represented by, for example, speaker-
dependent hidden layers, or input layer linear transforms applied by
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the input features of each speaker that are either separately learned
from GMM-HMM systems [11, 12, 13] or jointly estimated with the
remaining DNN parameters [14, 15]. It is also possible to use a set of
scaling vectors to learn the varying hidden layer units contributions
(LHUC) [16, 17, 18] among diverse speakers.

In common with other model based adaptation techniques that
require a significant number of SD parameters to be robustly esti-
mated, the standard LHUC based DNN adaptation method can lead
to over-fitting and poor generalization when using limited speaker
specific data. One solution to address this issue with parameter un-
certainty is to use a Bayesian learning approach. In machine learning
community, a series of previous research were conducted in this di-
rection. A practical Bayesian framework for back-propagation net-
works was introduced in [19]. Efficient variational learning based in-
ference was later proposed for Bayesian neural networks [20]. How-
ever, limited research has been conducted to apply Bayesian learning
for speech recognition. In [21], a Bayesian recurrent neural network
(RNN) using variational inference based training was evaluated on
the TIMIT speech corpus. A Bayesian learning approach for RNN
language models was proposed in [22].

In this paper, a novel Bayesian learning of hidden unit contribu-
tions (BLHUC) is proposed. A posterior distribution over the LHUC
scaling vectors is used to explicitly model the uncertainty associated
with the adaptation parameters. An efficient variational inference
based approach is adopted to estimate the LHUC parameter pos-
terior distribution. The proposed BLHUC method is investigated
for both unsupervised test time DNN model speaker adaptation, and
DNN model speaker adaptive training (SAT) [23]. To the best of our
knowledge, this is the first work about using Bayesian learning for
DNN speaker adaptation.

In the experiments, speaker-independent (SI) DNN-HMM sys-
tems, LHUC adapted DNN systems, and the proposed BLHUC
adapted DNN systems were built on a 300-hour Switchboard set-
up, and evaluated on speech recognition task of Hub5’ 00 data set.
By using only the beginning 1 utterance from each speaker as adap-
tation data, the BLHUC adapted systems outperformed the baseline
SI systems and standard LHUC adapted systems by up to 1.4% and
1.1% absolute in word error rate (WER) respectively. Consistent
performance improvements were also obtained by BLHUC adapta-
tion over the baseline SI, LHUC adapted, and LHUC SAT systems,
when the adaptation data amount from each speaker was increased.

The rest of this paper is organized as follows. The standard L-
HUC method will be reviewed in section 2. Then, section 3 intro-
duces the proposed BLHUC technique. The variational inference
based estimation of the BLHUC speaker-dependent parameters will
be described in section 4. In section 5, various DNN-HMM systems
with or without LHUC/BLHUC adaptation are evaluated on the
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speech recognition tasks of the Switchboard databases. Section 6
draws the conclusion and the future works.

2. LEARNING HIDDEN UNIT CONTRIBUTIONS

The key idea of using learning hidden unit contributions (L-
HUC) [16] for speaker adaptation is to modify the amplitudes
of DNN hidden unit activations for each speaker. This speaker-
dependent (SD) modification can be explicitly parameterized by us-
ing scaling vectors. Then, for speaker s and the lth hidden layer,
letting rl,s ∈ RD denotes the parameter set of scaling vector, the
hidden layer output can be computed by

hl,s = ξ(rl,s)⊗ ψ(W l>hl−1,s + bl) (1)

whereW l and bl denote the DNN weight matrix and bias vector, ψ
is the hidden unit activation function (which is sigmoid in this work),
and ⊗ denotes the Hadamard product. The scaling vectors are mod-
eled by function ξ :RD→{R+}D on parameters rl,s. Typically, ξ can
be sigmoid[16, 17], linearity or RELU [18] functions. In this work
the element-wise function ξ(·) = 2sigmoid(·) is utilized, such that
the hidden unit amplitude scaling are constrained in (0, 2). Figure 1
is an example of using LHUC adaptation in a DNN acoustic model.

LHUC scaling vector

Fig. 1. An example of using LHUC adaptation in a DNN acoustic
model.

When using LHUC adaptation, the hidden layer output be-
comes speaker-dependent by using Dl dimensional of SD param-
eters, which can be significantly less than the transformation based
adaptation techniques. However, in practiceDl can still be large and
the available adaptation data may be limited, thus it may be insuffi-
cient to give a robust estimation for the Dl dimensional parameters.

3. BAYESIAN LEARNING OF HIDDEN UNIT
CONTRIBUTIONS

In standard LHUC adaptation, given adaptation data os and the cor-
responding alignment cs for speaker s, the inference for data ost is

P (cst |ost ,os, cs) =

∫
P (cst |ost , rs)p(rs|os, cs)drs (2)

≈ P (cst |ost , r̂s) (3)

where r̂s = argmaxrs P (cs|os, rs) is the maximum likelihood
(ML) estimate of SD parameters rs. The ML approximation
by equation (3) makes sense only when the strong assumption
p(r̂s|os, cs) ≈ 1 on the posterior distribution makes sense. How-
ever, the limited amount of available adaptation data may lead to

uncertainty on the SD parameters, thus this approximation may not
be trustworthy.

Therefore, Bayesian learning of hidden unit contributions (B-
LHUC) is proposed to change the deterministic SD parameters rs

in standard LHUC to probabilistic for modeling their uncertainty, by
given rs ∼ p(rs) where p(rs) is a speaker-independent (SI) prior
distribution. However, computing the integral in equation (2) for in-
ference on BLHUC adapted DNN model may be slower than using
standard LHUC adaptation. An alternative more efficient approx-
imation is to exploit the expectation of rs following the posterior
distribution p(rs|os, cs) for the inference in equation (2) by∫

P (cst |ost , rs)p(rs|os, cs)drs ≈ P (cst |ost ,E[rs|os, cs]) (4)

where E[·] denotes the expectation. The approximation makes the
inference on BLHUC adapted DNN model has similar form and
computational complexity to using the standard LHUC adaptation.
Figure 2 shows an example of inference on BLHUC adapted DNN
model. The essential factor for using BLHUC adaptation is to com-
pute the posterior distribution p(rs|os, cs) of the scaling vectors rs.

Sampling

BLHUC scaling vector

Fig. 2. An example of inference on BLHUC adapted DNN model.

4. VARIATIONAL ESTIMATION FOR BLHUC
PARAMETERS

In order to estimate the posterior distribution of the BLHUC scaling
vector rs by variational approximation, the cross entropy (CE) of
the adaptation data can be written as

Loss = − logP (cs|os)

=− log

∫
P (cs|os, rs)p(rs)drs

≤−
∫
qs(r

s) logP (cs|os, rs)drs+KL(qs||p) (5)

where qs(rs) is the variational approximation of the posterior distri-
bution p(rs|os, cs), and KL(qs||p) =

∫
qs(r

s) log qs(r
s)

p(rs)
drs de-

notes the Kullback-Leibler (KL) divergence between distributions
qs and p. For simplification, both qs and p are assumed to be nor-
mal distributions, namely qs(rsd) = N (rsd;µs,d, σ

2
s,d) and p(rsd) =

N (rsd;µ0,d, σ
2
0,d) on the dth dimension. Then, the expectation in

equation (4) can be simply computed as

E[rs|os, cs] = µs. (6)

Moreover, the KL divergence can be explicitly calculated by

KL(qs||p) =
1

2

D∑
d=1

{
(µs,d − µ0,d)

2 + σ2
s,d

σ2
0,d

− log
σ2
s,d

σ2
0,d

− 1

}
(7)
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where D denotes the number of hidden units for adaptation.
BLHUC scaling vector posterior can then be parameterized by

θB
s = {µs,γs} (8)

where σs = exp(γs). In order to make the θB
s updatable in the

integral in equation (5), the integral can be rewritten as∫
qs(r

s) logP (cs|os, rs)drs

=

∫
N (ε; 0, I) logP (cs|os,µs + exp(γs)⊗ ε)dε

≈ 1

J

J∑
j=1

logP (cs|os, θB
s , εj) (9)

where εj is the jth Monte Carlo sample drawed from the standard
normal distribution. Then, the gradient of θB

s in one data batch m
can be computed by

∂Lossm
∂θB
s

≈− Ns
JNm,s

J∑
j=1

∂ logP (csm|osm, θB
s , εj)

∂θB
s

+
∂KL(qs||p)

∂θB
s

=α

{
− 1

J

J∑
j=1

∂ logP (csm|osm, θB
s , εj)

∂θB
s

+
Nm,s
Ns

∂KL(qs||p)
∂θB
s

}
(10)

where N{·} denotes the number of frames, and α = Ns
Nm,s

which can
be absorbed by the learning rate. To be specific, the gradients of loss
function over µs and γs on the dth dimension can be computed as

∂Lossm
∂γs,d

=α

{
1

J

∑J

j=1
GLHUC
s,j,d σs,dεj,d+

Nm,s
Ns

(
σ2
s,d

σ2
0,d

−1

)}
∂Lossm
∂µs,d

=α

{
1

J

∑J

j=1
GLHUC
s,j,d +

Nm,s
Ns

µs,d−µ0,d

σ2
0,d

}
(11)

where GLHUC
s,j,d = − ∂ logP (csm|o

s
m,r

s
j )

∂hs
d

∂ξ
∂rs

j,d
ψd is the gradient in stan-

dard LHUC. Therefore, the update of θB
s over one batch is a trade

off between the ML learning of DNN and the penalty for distance
to the prior. If the data amount Ns is small, qs is more likely to
approach the SI prior. Thus the variational Bayesian estimation in
BLHUC should be more robust than the ML estimation in standard
LHUC. Furthermore, an efficient update by setting J = 1 can be
used instead of computing the summation [24]. Then, the gradient
equation (10) has a similar form to that for conventional DNN adap-
tation using KL-divergence regularization [25]. However, the main
difference is, for DNN adaptation using BLHUC, the variable εj is
randomly selected by normal distribution and thus various for each
time of update. The variances on difference entries of BLHUC scal-
ing vector can be tied together such that it has similar parameter
number to the standard LHUC.

An important issue of BLHUC adaptation is selection of the pri-
or distribution. As the speaker-independent (SI) DNN can be viewed
as using BLHUC with rs = 0, zero mean and unit variance can be
used by the prior distribution in BLHUC test time SI DNN model
adaptation. When applying BLHUC test time adaptation on BLHUC
speaker adaptive training (SAT) [23] DNN model, the BLHUC pri-
or can be directly estimated by computing gradients over µ0,d and
σ0,d derived from equations (5) and (7). Alternatively, BLHUC test
time adaptation can be applied to the LHUC SAT model. Then, the
BLHUC prior will be estimated by replacing the SD LHUC param-
eters rs with SI LHUC parameters r0 and globally learned with all
training data, similar to the prior estimation in [26].

5. EXPERIMENTS

5.1. Experimental setup

The proposed BLHUC method is investigated for both unsuper-
vised test time speaker-independent (SI) DNN model adaptation, and
DNN model speaker adaptive training (SAT). DNN-HMM systems
with 8929 tied tri-phone states were built on a 300-hour Switchboard
setup. A four-gram language model with 30-thousand words was
employed for evaluation on the Hub5’ 00 data set with SWBD and
CallHome test sets. DNNs with 6 hidden layers were trained under
the minimum cross entropy (CE) criterion and minimum phone error
(MPE) criterion. Each of the hidden layer contained 2000 hidden no-
des. 9 successive frames of 80 dimensional filter-bank features with
the first order difference were concatenated and used as the DNN in-
put features. Back propagation with stochastic gradient descent was
employed to update each mini-batches with 800 frames. In the pre-
vious research [27], under a similar configuration the performance
of speaker-independent DNN system trained with CE on the SWBD
test set was 15.5% in word error rate (WER). The baseline SI DNN
system here got a similar 15.3% of WER. All systems were trained
and evaluated with a modification of Kaldi [28] and HTK [29].

When using LHUC or BLHUC adaptation, the SD parameters
were employed on the first hidden layer only. Alignments decoded
by the baseline SI DNN systems were used for estimating the SD
parameters.

5.2. Performance of BLHUC adaptation

Performance of different DNN-HMM systems using or without us-
ing test time speaker adaptation were evaluated on the SWBD and
CallHome test sets and shown in table 1. Systems (1)-(3) were
trained by minimizing the cross entropy, and systems (4)-(6) were
trained based on MPE. Systems (1.1) and (2.1) were baselines in the
previous research [16] with similar setup to systems (1) and (2). The
standard LHUC adapted DNN systems (Sys (2) and (5)) significant-
ly outperformed the corresponding baseline SI DNN systems (Sys
(1) and (4)) by about 4.5% relative WER reductions on SWBD
and 6%-10% relative WER reductions on CallHome, respectively.
Moreover, consistent improvements were obtained by using BLHUC
adaptation (Sys (3) and (6)) against the standard LHUC adaptation
(Sys (2) and (5)) on both CE and MPE trained DNN systems, while
similar numbers of SD parameters were exploited.

Sys DNN Test #SD WER (%)
criterion adapt params SWBD CallHome

(1)

CE

- - 15.3 27.6
(1.1) - - 15.2 [16] 28.2 [16]
(2) LHUC 2k 14.6 25.8
(2.1) LHUC - 14.7 [16] 26.6 [16]
(3) BLHUC 2k 14.2 25.3
(4)

MPE
- - 13.4 26.8

(5) LHUC 2k 12.8 24.0
(6) BLHUC 2k 12.4 23.1

Table 1. Performance of baseline SI, LHUC adapted, and BLHUC
adapted DNN systems evaluated on SWBD and CallHome test sets.

Table 2 shows the performance of LHUC adapted and BLHUC
adapted DNN systems when the beginning 100%, 50%, 25%, 10%
and 1 utterances from the SWBD and CallHome test sets were uti-
lized as adaptation data for each speaker. Comparing system (3) to
system (2), and system (6) to system (5), BLHUC adaptation con-
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sistently outperformed the standard LHUC adaptation, when various
amounts of adaptation data as low as only 1 utterance were used. On
the more difficult CallHome test set, significant improvements could
be obtained by the BLHUC adapted DNN system (Sys (6)) over the
standard LHUC adapted DNN system (Sys (5)) based on MPE train-
ing. When only 1 utterance (2 seconds on average) was utilized as
adaptation data from each speaker, BLHUC adaptation significant-
ly outperformed the standard LHUC adaptation by absolute WER
reduction of 1.1%. Figure 3 and 4 show the performance contrast
of LHUC adaptation and BLHUC adaptation on MPE trained DNN
systems using various amount of adaptation data.

Test set Sys DNN Test WER (%) w.r.t. adapt data amount

criterion adapt 1 utt† 10%‡ 25% 50% 100%
4s§ 22s 51s 98s 185s

SWBD

(1)
CE

- 15.3 15.3 15.3 15.3 15.3
(2) LHUC 15.2 15.0 14.8 14.8 14.6
(3) BLHUC 14.9 14.6 14.4 14.3 14.2
(4)

MPE
- 13.4 13.4 13.4 13.4 13.4

(5) LHUC 13.3 13.1 13.2 13.0 12.8
(6) BLHUC 13.3 13.1 12.9 12.7 12.4

Test set Sys DNN Test WER (%) w.r.t. adapt data amount

criterion adapt 1 utt 10% 25% 50% 100%
2s 15s 33s 70s 140s

Call-

(1)
CE

- 27.6 27.6 27.6 27.6 27.6

Home

(2) LHUC 27.4 27.1 26.6 26.0 25.8
(3) BLHUC 27.2 26.5 26.0 25.7 25.3
(4)

MPE
- 26.8 26.8 26.8 26.8 26.8

(5) LHUC 26.5 25.2 24.6 24.5 24.0
(6) BLHUC 25.4 24.1 23.6 23.4 23.1

Table 2. Performance of LHUC and BLHUC test time adaptation
using various amounts of adaptation data.
†: “1 utt” means that 1 utterance from each speaker in the test set was used
as adaptation data; ‡: “10%” means that 10% utterances from each speaker
in the test set was used as adaptation data; §: “4s” means the average time of
adaptation data used for each speaker is 4 seconds.
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Fig. 3. Performance contrast of LHUC adapted and BLHUC adapt-
ed DNN MPE systems using various amounts of adaptation data on
SWBD test set.

5.3. Performance of BLHUC SAT systems

Performance of using LHUC and BLHUC test time speaker adap-
tation on different SAT DNN-HMM systems were evaluated on the
SWBD and CallHome test sets and shown in table 3. Here align-
ments for test time adaptations were decoded by the baseline SI
DNN system (Sys (1)). The standard LHUC SAT DNN system (Sys
(2)) significantly outperformed the baseline SI DNN system (Sys
(1)) by 13.7% and 14.9% relative WER reductions on the SWBD and
CallHome test sets respectively. Consistent improvements could be
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Fig. 4. Performance contrast of LHUC adapted and BLHUC adapt-
ed DNN MPE systems using various amounts of adaptation data on
CallHome test set.

obtained by using BLHUC test time adaptation on both the LHUC
SAT (Sys (3)) and BLHUC SAT (Sys (4)) DNN systems, compared
to the standard LHUC adaptation. Finally, the BLHUC SAT DNN
system (Sys (4)) achieved the best performance among these SAT
DNN systems by using the whole test set as adaptation data. How-
ever, reducing the amount of adaptation data in BLHUC SAT DNN
system led to no improvement over the LHUC SAT DNN system.
This might be caused by the inappropriate settings for the BLHUC
SAT DNN system. Further investigations will focus on improving
the BLHUC SAT system in the future.

Sys DNN SAT Test WER (%)
criterion adapt SWBD CallHome

(1)

CE

- - 15.3 27.6
(2) LHUC LHUC 13.2 23.5
(3) LHUC BLHUC 13.0 23.4
(4) BLHUC BLHUC 12.8 22.9

Table 3. Performances of SAT DNN systems using LHUC and B-
LHUC adaptation.

6. CONCLUSION

This paper proposed the Bayesian learning of hidden unit contribu-
tions (BLHUC) technique for DNN speaker adaptation. A poste-
rior distribution over the LHUC scaling vectors is used to explicitly
model the uncertainty associated with the adaptation parameters. An
efficient variational inference based approach is adopted to estimate
the LHUC parameter posterior distribution. Experiments conduct-
ed on a 300-hour Switchboard setup showed that, when only us-
ing 1 utterance from each speaker as adaptation data, the proposed
BLHUC adaptation outperformed the baseline speaker-independent
DNN systems and LHUC adapted DNN systems by up to 1.4% and
1.1% in absolute WER reduction respectively. When increasing
the adaptation data amount, consistent performance improvements
could be obtained by BLHUC adaptation systems over the baseline
SI, LHUC adapted and LHUC SAT systems. To the best of our
knowledge, this is the first work about using Bayesian learning for
DNN speaker adaptation. Future works will focus on improving the
BLHUC SAT system and other forms of adaptation technique using
Baysian learning.
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