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ABSTRACT

Connectionist temporal classification (CTC) is a sequence-level loss
that has been successfully applied to train recurrent neural network
(RNN) models for automatic speech recognition. However, one ma-
jor weakness of CTC is the conditional independence assumption
that makes it difficult for the model to learn label dependencies. In
this paper, we propose stimulated CTC, which uses stimulated learn-
ing to help CTC models learn label dependencies implicitly by using
an auxiliary RNN to generate the appropriate stimuli. This stimuli
comes in the form of an additional stimulation loss term which en-
courages the model to learn said label dependencies. The auxiliary
network is only used during training and the inference model has
the same structure as a standard CTC model. The proposed stimu-
lated CTC model achieves about 35 % relative character error rate
improvements on a synthetic gesture keyboard recognition task and
over 30 % relative word error rate improvements on the Librispeech
automatic speech recognition tasks over a baseline model trained
with CTC only.

Index Terms— connectionist temporal classification, stimu-
lated learning, sequence classification

1. INTRODUCTION

Natural languages exhibit a hierarchical structure where (discrete)
abstractions are composed of lower level entities which can be either
discrete or continuous. For example, words are used to convey a se-
mantic meaning and are composed of characters or symbols. These
symbols can be communicated in written or oral form, where the
representation is again changed and we observe a two-dimensional
picture or an audio signal, i.e. a continuous representation.

Despite this hierarchical structure, nowadays recognition mod-
els usually model each level separately and then fuse the respective
probabilities. For example, the hybrid and connectionist temporal
classification (CTC) phonemic acoustic models assume that the la-
bels are conditional independent given the current state and are usu-
ally not explicitly aware of the concept of words. Although recurrent
neural networks could implicitly learn the linguistic concepts such
as words, practical issues with learning long-term dependencies and
limited model capacity arguably prevent them from doing so [1].

In this work, we aim to make the model aware of the context of
the higher level representation by explicitly incorporating it during
training. Assuming we know the alignment between the different
representations, we utilize the so called stimulated learning [2, 3, 4]
to constrain the state trajectory of a recurrent neural network (RNN)
model to conform that of a higher level model, i.e. we stimulate the
states at segment boundaries to be the same as those provided by
an additional recurrent model of the higher level representation. In
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particular, an acoustic model is stimulated to conform the state tra-
jectory of a language model (LM) by gradually transitioning from
one LM state to another one while consuming the acoustic frames
as observations. This also has the benefit that we know the state of
the model at certain points in time and can train it in a segment-wise
fashion – similar to truncated backpropagation through time (BPTT)
but without any loss of gradient information. This stimulation hap-
pens only during training time and no additional overhead during
inference is introduced.

For many applications, however, we do not have such knowledge
about (meaningful) segment boundaries but rather need to infer those
from the observation itself. For these cases, we extend our model to
full sequence training. Namely, we propose to combine it with CTC.
To this extent we utilize the CTC state posteriors, i.e. the soft align-
ment, to obtain an attention over the state trajectory to stimulate at
the right positions in time. We hypothesize that this helps the model
to exploit linguistic structure and to attenuate the conditional inde-
pendence assumption introduced by CTC by stimulating the model
to implicitly learn label dependencies.

Our model bears many similarities to the hierarchical recurrent
neural network (HRNN) [5] and even more to the hierarchical mul-
tiscale recurrent neural network (HM-RNN) [6, 7] which also tries
to exploit the hierarchical structure of the data. The latter consists
of multiple RNN layers and a latent variable which controls the cur-
rent operation for each layer. Higher layers copy their state until the
layer below flushes its content. In this case, the upper layer updates
its state and provides the updated state as a context for the next step
to the layer below. Compared to the segment-wise model we pro-
pose, the functionality and rational is very similar if the HM-RNN
would learn to flush at the same segment boundaries. In fact, [7] also
uses phoneme boundaries as information to guide the latent variable
during training with an additional loss term. For the full sequence
training, our proposed mechanism to discover boundaries is different
and more explicit as it exploits prior knowledge (for example about
words in the transcription).

The remainder of this paper is organized as follows. Section 2
introduces the formulation of stimulated CTC. Section 3 describes
the training procedures of the proposed models. Finally, section 4
presents experimental results on a gesture keyboard recognition task
and the Librispeech [8] automatic speech recognition tasks.

2. STIMULATED CTC

In a label sequence prediction task, the input feature sequence (X)
and the output label sequence (W ) are not always of the same
length. A prediction model typically introduces a time-aligned label
sequence containing repeats and blank symbols, Y , so that the prob-
ability of the label sequence given the input sequence, P (W |X),
can be decomposed into a product of conditional probabilities.
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For a unidirectional model, we have

P (W |X) =

T∏
t=1

P (yt|X1:t,W 1:kt) (1)

where yt is the time-aligned label at time t, X1:t is the input feature
sequence up to time t and W 1:kt is the corresponding output label
sequence up to label kt (the last label whose end time is less than t).

CTC is a popular sequence prediction model that has been suc-
cessfully applied to automatic speech recognition [9] and keyboard
gesture recognition [10]. CTC assumes that the conditional proba-
bilities are independent of label history:

P (yt|X1:t,W 1:kt) ≈ P (yt|X1:t) = P (yt|h(x)
t ) (2)

where h
(x)
t is the encoded input features at time t (typically using

an RNN) to capture long term input history. Therefore, it has a
limited capacity to learn a language model. In practice, context-
dependent output units are used in combination with an external
LM [11]. There are other end-to-end techniques that model the label
dependencies explicitly, such as recurrent neural network transducer
(RNN-T) [12, 13], listen attend spell (LAS) [14, 15] and neural trans-
ducer (NT) [16]. Specifically, RNN-T can be viewed as an extension
to CTC by explicitly incorporating label dependencies:

P (yt|X1:t,W 1:kt) ≈ P (yt|h(x)
t ,h

(w)
kt

) (3)

where h
(w)
kt

is the RNN encoded LM state, summarizing the label
history up to label kt. However, label history has to be explicitly
tracked and there is no merging of LM states due to the continuous
state representation of an RNN.

In this paper, we investigate the possibility of incorporating the
label history information (h(w)

kt
) implicitly into h

(x)
t through stim-

ulated learning [2, 3, 4] to improve a CTC model. The stimuli are
generated by an auxiliary RNN, which is jointly learned with the
prediction RNN. We treat h(w)

kt
as privileged information that are

only available during training and introduce an additional stimula-
tion loss term to minimize the mean squared error (MSE) between
h

(x)
t and h

(w)
kt

. Stimulated CTC can be viewed as a kind of distilla-
tion (student-teacher) training [17], where the auxiliary RNN LM is
used as a teacher to guide the student CTC RNN to learn a better un-
derlying state representation. Like RNN-T, stimulated CTC jointly
trains the RNN LM with the recognition RNN model but the LM
component is only used during training.

A schematic overview of the stimulated CTC model is shown in
Fig. 2.

3. TRAINING PROCEDURE

The stimulated CTC loss function consists of three loss terms:

Ltotal = Lctc + αLlm + βLstimu

where Lctc is the standard CTC loss, Llm is the LM loss and Lstimu is
the stimulation loss. α and β are weight factors that can be adjusted
to trade-off the importance of each loss. The LM loss, which is the
standard cross-entropy loss for RNN LM [18], is given by:

Llm = − 1

K

K∑
k=1

logP (wk|h(w)
k−1)

Fig. 1. Illustration of the segment-level model with the recognition
(lower part) and the auxiliary (n-gram) LM (upper part). The dashed
blue lines at the B-C boundary indicate that the state can either come
from the auxiliary model or from the observation model itself (form
segment-level training). The red dash-dot lines show where the MSE
loss is applied. Noise is added optionally to the context as indicated
by the dashed red line.

As previously mentioned, h(w)
k−1 is encoded using an auxiliary RNN

model. The RNN can also be constrained to resemble an n-gram
LM [19] by limiting the RNN memory to the last n− 1 labels. This
allows us to control the complexity of the auxiliary model. The LM
loss ensures that h(w)

k−1 is highly predictive for wk. Using RNN for
the auxiliary model makes it easy to jointly optimize both the recog-
nition and auxiliary models.

The stimulation loss, Lstimu, helps the recognition model learn
the higher level (i.e. linguistic) abstractions implicitly by ensuring
that the RNN state trajectory of the recognition model conforms to
that of the auxiliary RNN. The stimulation loss can be computed in
different ways depending on the whether a hard or soft alignment
is used. For most sequential observations a meaningful alignment
(segmentation) is unavailable at training time and has to be inferred
as part of the training process.

3.1. Hard Alignment

When hard alignment is used, we can apply the stimulation loss at
the segment boundaries:

Lstimu =
1

K

K∑
k=1

||h(x)
τk − h

(w)
k ||

2 (4)

where K is the label sequence length and τk is the end of segment
boundary for the k-th label. This allows us to perform segment-level
training by splitting the observation sequence (X1:T ) into K non-
overlapping segments, Sk, one for each label. For the k-th segment,
we train an RNN1 to predict wk at the end of the segment and blanks
elsewhere. h(w)

k−1 is used as the initial RNN state and the final RNN
state after observing the segment Sk is constrained to be close to
h

(w)
k (by using the stimulation loss in Eq. 4). If the constraint is

well-satisfied, inference becomes easy as we can just treat the model
as a normal RNN and fully unroll the whole sequence.

1We use the term RNN here as a general description of a recurrent model.
Any specific architecture like LSTMs, GRUs etc. can be used.
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The above segment-level training decomposes a full sequence
optimization problem (due to the recurrent nature of RNNs) into
smaller independent optimization problems. This is similar in spirit
to the work that decomposes optimization of a deep neural network
into independent optimization problems, one for each layer [20, 21].

In the following, we will discuss several improvements made to
the above segment-level training.

• Stochastic Stimulation
It is unlikely that the recognition model will be able to transition
to these states exactly since the observations themselves are as-
sumed to be continuous. To make the model more robust against
small errors in the LM state estimation, we add small Gaussian
noise to the initial states during training. The variance can either
be fixed upfront or generated by the auxiliary model. In the latter
case, instead of MSE, negative log likelihood is used as the stimu-
lation loss. Therefore, if the prediction of the model is inaccurate,
the auxiliary model is encouraged to increase the variance. Ulti-
mately, this should result in a variance which reflects the model
uncertainty about its decision but keeps the context informative.

• Multi-label Segments
Stochastic stimulation alone does not address the problem with
inaccurate state trajectory estimation. When trained in a segment-
wise fashion, the model never encounters a true cross segment
transition since the initial state for each segment is always pro-
vided by the auxiliary model. This leads to a significant decrease
in performance as we will show in the results section. To circum-
vent the problem, we consider training segments of multiple la-
bels by stitching together m consecutive segments. This way, we
expose the model to situations as described above during training
and the model learns to cope with uncertainty in the context and
also to recover from classification errors.

• Constrained CTC loss
Another problem we encountered during initial experiments is
that the model struggles to output the prediction at the very end of
the segment. Using a per-segment CTC loss led to another prob-
lem where the model quickly learned to make the prediction at the
first frame of the segment based on the LM state provided by the
auxiliary model, without considering the observation. In order to
prevent this behaviour, we use a constrained CTC loss that only
allows labels to be emitted in the last 25% frames of the segment,
forcing the model to output blank symbols at the beginning.

3.2. Soft Alignment

Soft alignments are computed when computing the gradient of the
CTC loss with respect to the logits. This is given by, γt(k) =
P (yt = wk|X1:T ), the probability that a label wk is aligned to time
t, which can be computed efficiently using the forward-backward al-
gorithm [22]. We use this information as weight to calculate the
stimulation loss as follows:

Lstimu =
1

K · T
∑
k

∑
t

γt(k)||h(x)
t − h

(w)
k ||

2

Note that for soft-alignment stimulation, we unroll the recognition
network over the whole sequence. This also means, that we have
only one CTC loss over the whole sequence and not one per segment
as in the previously described segment-level training. Overall, this
is much closer to a standard RNN model, except for the stimulation
of the state, which is meant to guide its trajectory.

Fig. 2. Example input for keyboard gesture recognition. The red
dots illustrate the x-y-coordinates whicht are used as inputs. The big
red dots correspond to segment boundaries.

4. EXPERIMENTS

To analyze the behavior and evaluate the performance of our pro-
posed approach we conduct experiments on two different tasks. All
the models are trained using Tensorflow [23] using the efficient CTC
implementation described in [22].

The first one is keyboard gesture recognition. For this task, the
input are the x-y-coordinates of a swipe gesture performed on a vir-
tual keyboard and the goal is to predict the swiped word. We choose
this task because it allows us to easily generate data with known seg-
mentation so that we can perform in-depth evaluation to compare the
segment-level (Section 3.1) and the full sequence training methods
(Section 3.2).

The second task is automatic speech recognition (ASR) for
which we use the Librispeech database [8] as an example. Here, we
cannot use the segment-level model and focus on the full sequence
model which we compare to a model without stimulation.

4.1. Keyboard gestures recognition

For the keyboard gesture recognition scenario, the goal is to predict
a word given the x-y-coordinates from a swipe gesture on a virtual
keyboard. All data for this task is generated by sampling a word
(with at least two characters) from the CMU dictionary, and con-
necting the keys of a virtual keyboard corresponding to the words
characters.

To connect the keys we use Bézier curves and add three types of
noise. One, which we call anchor noise, moves the connection point
away from the center of the key. We use a Gaussian distribution
with zero mean and a fixed variance to model this type of noise.
The second one influences the sampling interval of the curves and is
again modeled using a gaussian distribution. The last one modifies
the distance of the control points for the construction of the Bézier
curves and thus influences the curvature.

An example from this dataset is depicted in Fig. 2. We split
the dataset into one for training, validation and evaluation by using
80%, 10% and 10% of the words from the CMU dictionary re-
spectively, resulting in 88713, 11089 and 11089 unique words for
the sets. We further sample all three noise types during training for
each iteration randomly and with a fixed seed for the validation and
evaluation set.

For all experiments we use a one layer LSTM network with
256 units as the recognition network and auxiliary model. Our base-
line is a LSTM network of the same size trained with CTC without
stimulation. Note that this model is exactly equivalent in terms of
inference with the stimulated models. We train all models for 4M it-
erations and use the one with the best performance on the validation
set for evaluation. All networks are trained to predict the strokes
of the gesture, i.e. the start and end key. The validation set is also
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Table 1. CERs / % on the noisy gesture recognition dataset for dif-
ferent number of combined segments.

Combined segments
1 2 4 6

Stimulated + fixed noise 38.8 6.2 4.7 4.3

Stimulated + learned noise 31.3 6.0 4.2 3.6

Table 2. CERs / % on the noisy gesture recognition dataset with full
sequence training. Stimulated uses a priori boundary information
for stimulation while stimulated CTC uses the CTC soft-alignment
as attention.

CTC Stimulated stimulated CTC

5.5 3.6 3.7

used to choose the optimal parameters for the learning rate, the loss
weights, the context noise variance and the n-gram order of the aux-
iliary model if applicable. For evaluation, we decode using a prefix
beam search decoder constrained by all words contained in the CMU
dictionary. The metric we are interested in is the character error rate
(CER). To minimize the effect of randomness, we run each experi-
ment at least three times. We always report the best result here but
none of the results had notable outliers.

The baseline model achieves a CER of 5.5% for this task (see
Table 2). The basic model (with fixed context noise) performs very
poorly, resulting in a CER of 38.8%. However, if we provide the
correct context vector also during evaluation, the CER reduces dras-
tically to 1.9%. This supports what we suggested in Section 3.1:
Once the prediction is off for one segment, the model might not be
able to recover due to the way we use it during inference. The pro-
posed solution for this was to combine a certain number of segments
to also expose the model to such situation already during training
time. And indeed, if we only combine every two segments, the CER
goes down to 6.2%. We also observe that the performance improves
the more segments we combine. Notably, the model outperforms the
baseline when combining four segments or more. If we also let the
auxiliary model learn the parameters of the additive context noise
and combine six segments, the model reaches a CER of 3.6%, i.e.
an improvement of nearly 35% relative compared to the baseline.
All results are shown in Table 1.

Finally, we evaluate the full sequence model. The previous re-
sults already showed, that the performance improves with the num-
ber of combined segments. Table 2 shows the results for fully un-
rolled training, i.e. when we combine all segments of a gesture.
Here, no context is provided by the auxiliary model and it is only
used to stimulate the state at boundaries. For a better comparison
with the baseline, we also do not add noise to the context in this
case. As the results show, this does not influence the performance
of the stimulated model and the CER is still 3.6%. We now omit
the a priori knowledge of the boundaries and use the CTC soft-
alignment to stimulate the model (Section 3.2) The performance is
only marginally effected (3.7% CER) by this, showing the effective-
ness of our proposed approach.

Table 3. WERs / % on the Librispeech datasets using different de-
coding strategies.

Decoding
Model

dev test
Strategy clean other clean other

Greedy
CTC 19.1 35.2 20.0 36.0

CTC stimulated 12.3 27.1 12.7 27.7

0-gram
CTC 17.6 34.1 18.5 34.8

CTC stimulated 11.3 26.2 11.7 26.9

3-gram
CTC 14.6 29.7 15.2 30.4

CTC stimulated 9.8 23.6 10.3 24.2

4.2. ASR: Librispeech

To further evaluate the full sequence model, we also compare it to a
CTC baseline on the Librispeech ASR task [8]. We use all available
data for training (i.e. all three training sets for a total of 960 h of
speech) and evaluate on the clean and other set.

The baseline model has 4 LSTM layers with 1,024 units each
and is trained using the CTC loss only. Instead of characters or
phonemes, we choose subword units [24] as targets, leaving us with
a total of 16,328 classes. We compare this model to a stimulated one
where we use the exact same structure but stimulate the last layer as
described in Section 3.2. Consequently, the auxiliary is a one layer
LSTM with the same number of units and acts as an LM for the sub-
word units. Both models are trained with Adam optimization [25]
with a learning rate of 1e−5.

The results for both model decoded with different language con-
straints are shown in Table 3. For 0-gram decoding, a zero LM
weight is used to constraint the decoder to output valid words. For all
cases, the stimulated model achieves much better results with gains
around 30%. Both models perform at least twice as good on the
clean set compared to the other set while the stimulated model loses
a bit more than the non-stimulated one. Comparing the different de-
coding constraints, the stimulated model also does not profit as much
from a stronger linguistic constrain as does the vanilla CTC model.
This can be seen as an indication that the model is able to better
exploit linguistic structure due to the stimulation as hypothesized.

Although our preliminary experimental results show promising
improvements, we acknowledge that our results are generally worse
compared to other work (e.g. [8]) and the baseline model is weak.
We suspect that this is due to untuned hyperparameters in combina-
tion with the choice of subword as the output units. In addition, it
may also be difficult to learn a CTC model from scratch with long
utterances. Further experiments are needed to validate the effective-
ness of the proposed method.

5. CONCLUSIONS

In this paper, we proposed using stimulated learning to improve a
CTC model by introducing additional loss terms to encourage the
model to learn implicit label dependencies. This can be viewed as a
special form of student-teacher training where an RNN LM is used
as a teacher to help the student CTC model learn the underlying
RNN states at label emission points. Preliminary experimental re-
sults on a synthetic gesture keyboard input recognition task and the
Librispeech automatic speech recognition tasks show that the pro-
posed stimulated learning has promising potential in learning a bet-
ter CTC model.
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