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ABSTRACT

In this paper, we develop conditional random field (CRF) based
single-stage (SS) acoustic modeling with connectionist temporal
classification (CTC) inspired state topology, which is called CTC-
CRF for short. CTC-CRF is conceptually simple, which basically
implements a CRF layer on top of features generated by the bot-
tom neural network with the special state topology. Like SS-LF-
MMI (lattice-free maximum-mutual-information), CTC-CRFs can
be trained from scratch (flat-start), eliminating GMM-HMM pre-
training and tree-building. Evaluation experiments are conducted
on the WSJ, Switchboard and Librispeech datasets. In a head-to-
head comparison, the CTC-CRF model using simple Bidirectional
LSTMs consistently outperforms the strong SS-LF-MMI, across all
the three benchmarking datasets and in both cases of mono-phones
and mono-chars. Additionally, CTC-CRFs avoid some ad-hoc oper-
ation in SS-LF-MMI.

Index Terms— CRF, CTC, single-stage

1. INTRODUCTION

In recent years, deep neural networks (DNNs) of various different
network architectures have advanced the state-of-the-art on large
scale automatic speech recognition (ASR) tasks. Initially, DNN-
HMM hybrid systems were developed [1], which rely on GMM-
HMM models to obtain initial alignments and state-tying decision
trees for context-dependent (CD) phone modeling. Recently, there
are increasing interests in building end-to-end ASR systems. In con-
trast to previous multistage ASR systems, an end-to-end model is of
single-stage, which eliminates GMM-HMM pre-training and tree-
building, and can be trained from scratch (flat-start) [2, 3, 4]. In
a more strict sense, only those single-stage models that remove the
need for a pronunciation lexicon and, even further, train the acoustic
and language models jointly rather than separately, are called end-
to-end [5, 6]. Three main classes of end-to-end models are based on
Connectionist Temporal Classification (CTC) [2, 7], attention based
Seq2Seq [6, 8] and RNN-transducer (RNN-T) [9, 10] respectively.

Though the simplicity of “end-to-end” is appealing, pure data-
driven end-to-end models are data-hungry, which require tens of
thousands hours of labeled speech to achieve state-of-the-art results
[8]. Note that in most application scenarios, pronunciation lexi-
con and large-scale text corpus for language modeling are readily
available. In this paper, we are interested in advancing single-stage
acoustic models, which use a separate language model (LM) with or
without a pronunciation lexicon.

It is shown in [4] that single-stage (SS) lattice-free maximum-
mutual-information (LF-MMI) with tree-free CD modeling tech-
nique achieves 10 to 25% relative WER reduction compared to
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other end-to-end methods (CTC, Seq2Seq, RNN-T) on well-known
databases, including 80-h WSJ, 300-h Switchboard and 2000-h
Fisher+Switchboard datasets. Basically, SS-LF-MMI is cast as
MMI-based discriminative training of a HMM (generative model)
with pseudo state-likelihoods calculated by the bottom neural net-
work with fixed state-transition probabilities. The labels could be
phones or characters, context-independent (CI) or CD, yielding
four cases. In any case, 2-state HMM topology is used (with best
performance reported in [3, 4]) and a silence label is included.

In contrast, in this paper, we develop conditional random field
(CRF) [11] based single-stage acoustic modeling with CTC topol-
ogy, which is called CTC-CRF for short. A CRF is a discrimina-
tive model by itself, which directly defines a conditional distribution
p(π|x) for the state sequence π , π1, · · · πT given the observation
sequence x , x1, · · · xT . By introducing a blank label, the CTC
topology defines a mapping B(·) that specifies how a state sequence
π maps to a label sequence l , l1, · · · lL, i.e. removing consecutive
repetitive labels and blanks. Then the acoustic-to-label probability
which underlies the CTC-CRF acoustic model is naturally given as
follows:

p(l|x) =
∑

π∈B−1(l)

p(π|x) (1)

We leave discussions about the connection and comparison of
CTC-CRF with other existing models in ASR to Section 2. CTC-
CRF is conceptually simple, which basically implements a CRF
layer on top of features generated by the bottom neural network with
the special state topology. It can be trained from scratch, namely
in single-stage. Evaluation experiments are conducted on the WSJ,
Switchboard and Librispeech datasets, representing different sizes
of training data. In a head-to-head comparison, the CTC-CRF
model using simple Bidirectional LSTMs consistently outperforms
the strong SS-LF-MMI [3, 4], across all the three benchmarking
datasets and in both cases of mono-phones and mono-chars. These
results are very encouraging, though bi-phone/bi-char SS-LF-MMIs
perform better than mono-phone/mono-char CTC-CRFs. We leave
bi-phone/bi-char CTC-CRFs as further work. Additionally, CTC-
CRFs avoid the ad-hoc operation of random insertions of silence
phones in transcriptions for estimating the denominator LM in SS-
LF-MMI.

2. RELATED WORK

In Table 1, we give a brief review of existing models in ASR, depend-
ing on state topologies, training objectives and whether the model
distribution is locally or globally normalized. We differentiate HMM
topology and CTC topology, though the later may be interpreted as
a special HMM topology [12]. The two differ not only in the state
transition structure but also in the label inventory used (which affects
not only the definition of the whole state space but also the estima-
tion of the denominator LM). As can been seen from the following
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review and to the best of our knowledge, this paper represents the
first exploration of CRFs with CTC topology.

2.1. Relation to LF-MMI

Basically, LF-MMI is cast as MMI-based discriminative training of
a HMM with pseudo state-likelihoods calculated by the bottom neu-
ral network with fixed state-transition probabilities. Since HMMs
are generative models, maximizing the training objective log p(l|x)
is often referred to as MMI training. Alternatively, LF-MMI can
be interpreted as conditional maximum likelihood (CML) training
of a CRF, which uses the neural network output as the node poten-
tial. Such equivalence is discussed in the early development of using
CRFs in ASR, which use zero, first and second order features in
potential definition. It is shown in [13] that MMI training of GMM-
HMMs is equivalent to CML training of such CRFs on the function
level. When neural networks are used to define features, it can be
seen that this equivalence still holds. For the two manners - indi-
rectly formulated as MMI training of a pseudo HMM or directly for-
mulated as CML training of a CRF, it would be conceptually simple
to adopt the later manner.

Specifically, the main differences between our CTC-CRF and
SS-LF-MMI in [3, 4] are:
• The two have different state topologies, as explained in Table

1. We use the term state topology to refer not only to the state
transition structure for a label but also to the label inventory.

• Since SS-LF-MMI includes the silence label, randomly in-
serting silence labels with probability 0.2 between the words
and with probability 0.8 at the beginning and end of the sen-
tences is used for estimating the n-gram denominator LM,
which may be inaccurate. Our CTC-CRF avoids such ad-hoc
operation as we do not include the silence symbol but use the
blank.

• The alignments between observations and states in CTC-CRF
are found to be similar to those in CTC, i.e. the alignments are
usually dominated by the blank symbols and the non-blank
symbols occur with spikes in their posteriors. The techniques
for CTC decoding [14] can also be used for CTC-CRF to
speed up decoding.

Note that besides MMI, there are other sequence discriminative
training strategies, e.g. state-level minimum Bayes risk (sMBR) cri-
terion, which has been applied to DNN-HMM hybrid systems [15]
and CTC systems [16]. CTC-CRFs could also be further trained
based on sMBR. But sMBR based training needs to generate de-
nominator lattices by decoding with word-level LMs, which is more
time-consuming.

2.2. Relation to CRF-based acoustic models

ASR is a sequence transduction problem in that the input and output
sequences differ in lengths, and both lengths are variable. An idea
in applying CRFs to ASR is to introduce a (hidden) state sequence
π to align the label sequence l and observation sequence x, and de-
fine a CRF p(π|x) over the (hidden) state sequence π. As shown in
Eq. (1), deriving p(l|x) based on p(π|x) depends on the mapping
between π and l, which is determined by the state topology that al-
lows for different choices, e.g. CTC topology or HMM topology.
This kind of hidden CRFs was explored in [17] for phone classifica-
tion, using zero, first and second order features. As reviewed before,
(hidden) CRFs using neural features for ASR are underappreciated.
This paper advances this approach, with clarified formulation, new
development of CTC-CRFs and strong empirical results. Segmental
CRFs [18] provide another solution to the alignment problem.

Model State
topology

Training
objective

Locally/globally
normalized

Regular HMM HMM p(x|l) local
Regular CTC CTC p(l|x) local
SS-LF-MMI HMM p(l|x) local
CTC-CRF CTC p(l|x) global
Seq2Seq - p(l|x) local

Table 1. Comparison of different models for ASR. HMM topology
denotes that labels (including silence) are modeled by multiple states
with left-to-right transitions, possible self-loops and skips. CTC
topology denotes the special state transitions used in CTC (including
blank). Locally/globally normalized denotes the formulation of the
model distribution. In defining the joint distribution of a model, lo-
cal normalized models use conditional probability functions, while
global normalized models use local un-normalized potential func-
tions. A clarification on placing “local” for SS-LF-MMI is that SS-
LF-MMI is cast as MMI-based discriminative training of a pseudo
HMM, and the HMM model is local normalized. Seq2Seq does not
use states to align label sequence l and observation sequence x.

3. METHOD

3.1. Model definition

For our CRF model, the conditional probability of the hidden state
sequence π given the observation sequence x is defined as:

p(π|x;θ) = exp(φ(π,x;θ))∑
π′ exp(φ(π

′,x;θ))

where π and x are of the same lengths (i.e. aligned). θ is the model
parameter. π is connected with l by a mapping B : STπ → SLl ,
which maps a state sequence π to a unique label sequence l. Sπ and
Sl are the symbol tables for π and l respectively. T and L are the
lengths of π and l respectively. Then p(l|x;θ) can be defined as:

p(l|x;θ) =
∑
π

p(π, l|x;θ) =
∑

π∈B−1(l)

p(π|x;θ)

The CML objective is defined asJCRF (θ) = log p(l|x;θ), and
the gradient of the objective is

JCRF (θ)
∂θ

= Ep(π|l,x)
[
∂φ(π,x;θ)

∂θ

]
−Ep(π′|x)

[
∂φ(π′,x;θ)

∂θ

]
.

As commonly found in estimating CRFs, the gradient is the dif-
ference between empirical expectation and model expectation. The
two expectations are similar to the calculations using the numerator
graph and denominator graph in LF-MMI respectively [19]. Next
we define the mapping B and the potential function φ(π,x;θ). For
simplicity, we omit θ in the following sections.

3.2. State topology

As discussed in Section 3.1, the only restriction of B is to map π to
a unique l. We choose to use the mapping represented by the CTC
topology. The symbol table Sπ contains the meaningful symbols
(characters or phones) plus the blank symbol, and Sl only contains
the meaningful symbols. We obtain l from π by first removing all
repetitive symbols bewteen the blank symbols, and then removing
all blank symbols, e.g. B(A−−−BB −B −−A) = ABBA.

It can be seen that any regular HMM topology with more than
one state can also represent a mapping satisfying the above unique-
ness restriction on B. “Regular HMM” stands for the composite
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HMM simply concatenating smaller HMMs. The CTC topology can
be represented by HMM with a special topology. Unless otherwise
stated, ”HMM” in the following sections stands for regular HMM.

We choose the mapping represented by the CTC topology for
two main reasons. First, CTC mapping has the smallest number
of units in Sπ among all possible mappings, by adding only one
blank symbol into Sl. If we use the mapping represented by regu-
lar HMMs, the number of units in Sπ is at least twice the number
of units in Sl (note that the mapping represented by a single-state
HMM can not map π to a unique l). The second reason is that we
prefer not to use the silence symbol, which will cause ad-hoc silence
insertions in estimating the denominator LM. The blank symbol can
absorb silences.

3.3. Potential function

The potential function of our CRF is defined as:

φ(π,x) =

T∑
t=1

log p(πt|x) + log p(l)

where l is the corresponding label sequence l = B(π). The first
term

∑T
t=1 log p(πt|x) is often referred to as the node potential.

The second term log p(l) is the edge potential. p(l) is defined based
on the n-gram denominator LM of labels, like in LF-MMI [19].
Specifically, p(l) is calculated as the path weight in a denomina-
tor WFST. The denominator WFST is the composition of the WFST
representing the CTC topology and the n-gram denominator LM.

If we omit the edge potential log p(l), the potential function
becomes self-normalized (

∑
π′ exp(φ(π

′,x)) = 1) and the CRF
model degrades to the regular CTC model.

3.4. Training and decoding

In training, we use the regular CTC objective as an auxiliary objec-
tive to help the convergence. The final objective function is

JCTC−CRF + αJCTC .

α is set to 0.1 in our experiments except WSJ, where α is set to 0.01.
In decoding, an external word-level LM is incorpolated. we

search the decoding graph with the score function as:

log p(l|x) + β log pLM (l)

where pLM (l) is word-level LM probability of l. β is set to 1.0 in
our experiments. We use WFST based decoding similar to Eesen
[2].

In both training and decoding, we need to construct a WFST
representation of the CTC topology (called T.fst in Eesen). Eesen
T.fst is not correct. An example of Eesen T.fst is shown in Fig 1(a).
In this example, the symbol table Sl contains “A”, “B” and “C”, and
Sπ = Sl∪ <blk>. “A:A” on the arc means consuming an input
symbol “A” and outputting a symbol “A”. “<eps>” means “no con-
suming” (no output). We can see that the Eesen T.fst makes mistakes
when two adjacent identical labels appear in l. The total number of
corresponding paths in B−1(l) will be mistakenly larger. We give
a corrected construction of T.fst in Fig 1(b). State 1, state 2 and
state 3 are considered to be the states corresponding to “A”, “B” and
“C”. When encountering a blank symbol at these states, we come
back to state 0 to consume blank symbols. State 1, state 2 and state
3 can jump to each other, consuming and outputting corresponding
symbols.

(a) T.fst in Eesen

(b) Corrected T.fst representing CTC topology

Fig. 1. WFST representation of the CTC topology

4. EXPERIMENTS

Evaluation experiments are conducted on 80-h WSJ, 300-h Switch-
board and 1000-h Librispeech datasets. The feature is the 40-
dimentional fbank feature with delta and delta-delta features (120
dimentions in total). We use cepstral mean and variance normaliza-
tion (CMVN) and subsampling of factor 3 to process the feature.
Our acoustic model is a 6-layer bidirectional LSTM with 320 hidden
units. Dropout is set to be 0.5 between every LSTM layer. The total
number of parameters is 13M, much smaller than most end-to-end
models. We use Pytorch to train CTC-CRFs. The optimizer is Adam
with an initial learning rate of 0.001. When the cross-validation loss
does not decrease, we decrease the learning rate to 0.0001. CTC-
CRFs are trained without any pre-training, so we call it single-stage
acoustic modeling.

The gradient computation in CTC-CRFs is implemented on
GPUs. Unlike SS-LF-MMI, we do not insert any silence symbol
when estimating the 4-gram denominator LM for the denominator
forward-backward calculation. Moreover, SS-LF-MMI modifies the
length of each utterance to one of 30 distinct lengths. In contrast,
our implementation supports variable length sequences.

4.1. WSJ

The WSJ dataset contains 80-hour speech data. We randomly split
the total 80 hours, using 95% data as the training data and using the
other 5% data as the validation data. The evaluation dataset contains
the harder dev93 set and the simpler eval92 set.

The results are shown in Table 2. The “bi-phone” used by SS-
LF-MMI is the full bi-phone considering all possible context depen-
dency. “SP” means speed perturbation for 3-fold data augmentation,
marked with “Y” (using SP) and “N” (not using SP). The “gram-
char” means using one or multiple characters as units (e.g. using
“AB” and “A” as units). Unless otherwise stated, all language mod-
els are word based.
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Model Unit LM SP dev93 eval92
SS-LF-MMI [4] mono-phone 4-gram Y 6.3% 3.1%
SS-LF-MMI [4] bi-phone 4-gram Y 6.0% 3.0%
SS-LF-MMI [3] mono-char 3-gram Y - 5.2%
SS-LF-MMI [3] bi-char 3-gram Y - 4.1%
SS-LF-MMI [3]1 mono-char 3-gram Y - 5.4%

CTC [20] mono-char 3-gram N 9.21% 5.53%
Eesen [2] mono-phone 3-gram N - 7.34%

Gram-CTC [21] gram-char - N - 6.75%
ESPNET [22] mono-char LSTM 2 N 12.4% 8.9%

CTC mono-phone 4-gram N 10.81% 7.02%
CTC-CRF mono-phone 4-gram N 6.24% 3.90%
CTC-CRF mono-phone 4-gram Y 6.23% 3.79%

CTC mono-char 4-gram N 12.57% 8.59%
CTC-CRF mono-char 4-gram N 8.62% 5.19%
CTC-CRF mono-char 4-gram Y 8.22% 5.32%

1 Using similar CTC topology
2 Character based LSTM language model

Table 2. WSJ results

Model Unit LM SP SW CH
SS-LF-MMI [4] mono-phone 4-gram Y 11.0% 20.7%
SS-LF-MMI [4] bi-phone 4-gram Y 9.8% 19.3%
SS-LF-MMI [3] mono-char 4-gram Y 13.3% -
SS-LF-MMI [3] bi-char 4-gram Y 10.9% 20.6%
SS-LF-MMI [3]1 mono-char 4-gram Y 14.5% -

Seq2Seq [6] subword LSTM2 N 11.8% 25.7%
CTC [23] mono-char n-gram N 15.1% 26.3%
CTC [24] subword LSTM2 N 14.7% 26.2%
CTC [25] word/mono-char No LM N 14.4% 24.0%

CTC mono-phone 4-gram N 12.9% 23.6%
CTC-CRF mono-phone 4-gram N 11.0% 21.0%
CTC-CRF mono-phone 4-gram Y 10.3% 19.7%

CTC mono-char 4-gram N 15.3% 26.7%
CTC-CRF mono-char 4-gram N 12.7% 24.0%
CTC-CRF mono-char 4-gram Y 11.4% 21.7%

1 Using similar CTC topology
2 Subword LSTM language model

Table 3. Switchboard results

Mono-phone/mono-char based CTC-CRFs achieve WERs of
3.79%/5.19% on the eval92 dataset respectively. These results show
significant improvements over regular CTC, with 45.6%/39.6% rel-
ative WER reductions on eval92. Speed perturbation did not help
much in the WSJ experiments. Compared to other systems, CTC-
CRFs are only weaker than the bi-phone/bi-char based SS-LF-MMI
models.

4.2. Switchboard

For the Swichboard dataset, we use the first 4000 utterances (total
5 hours) as the validation data. After removing some repetitive ut-
terances, 286-hour data is used as the training data. The Eval2000
data, which contains both Swichboard evaluation dataset (SW) and
Callhome evaluation dataset (CH), is used for evaluation.

The results are shown in Table 3. Compared to regular CTC,
our mono-phone/mono-char based CTC-CRF systems achieve
14.7%/17.0% relative WER reductions. Speed perturbation gives
6.4%/10.2% relative improvements. CTC-CRFs obtain WERs of
10.3%/11.4% on the Switchboard evaluation set (SW). These results
are significantly better than mono-phone/mono-char based SS-LF-
MMI models, though slightly worse (nearly relative 5%) than their
full bi-phone/bi-char based models. Comparing to other recent
end-to-end systems, our CTC-CRF systems are consistently better.

Model Unit LM SP dev test
clean other clean other

LF-MMI [19] tri-phone 4-gram Y - - 4.28% -
Seq2Seq [6] subword 4-gram1 N 4.79% 14.31% 4.82% 15.30%

CTC [20] mono-char 4-gram N 5.10% 14.26% 5.42% 14.70%
CTC [26] mono-char 4-gram N - - 4.8% 14.5%

CTC mono-phone 4-gram N 4.64% 13.23% 5.06% 13.68%
CTC-CRF mono-phone 4-gram N 3.87% 10.28% 4.09% 10.65%

CTC mono-char 4-gram N 5.00% 14.51% 5.29% 15.26%
CTC-CRF mono-char 4-gram N 4.26% 12.11% 4.67% 12.49%

1 Subword n-gram language model

Table 4. Librispeech results

WFST dev test
clean other clean other

Eesen T.fst 3.90% 10.32% 4.11% 10.68%
Corrected T.fst 3.87% 10.28% 4.09% 10.65%

Table 5. WERs with different T.fst on Librispeech test-clean set

WFST TLG size decoding time
Eesen T.fst 208M 700s

Corrected T.fst 181M 672s

Table 6. The decoding graph size and the time (excluding the neural
network computation) in decoding Librispeech test-clean set. The
language model is the official tri-gram language model.

4.3. Librispeech
We use 95% of the total 960h data as the training data, the other 5%
as the validation data. The official dev-clean, dev-other, test-clean
and test-other sets are used for evaluation.

Speed perturbation is not used in the Librispeech experiments
due to time and computational limitation. Mono-phone/mono-char
based CTC-CRF systems obtain 19.1%/11.7% relative WER reduc-
tions over regular CTC. Mono-char based CTC-CRF performs better
than other character/subword based systems, and mono-phone based
CTC-CRF outperforms the regular LF-MMI system [19] (4.28% on
the test-clean set, with speed perturbation and i-vector).

The training speed on Librispeech is approximately 1.3 hours
per epoch for the mono-phone CTC-CRF system, with 4 Tesla-P100
GPUs. The model converges after 35 epochs.

4.4. Analysis about T.fst and alignments
T.fst is used in both training and decoding. In training, we must
use the corrected T.fst, otherwise p(l|x) =

∑
π∈B−1(l) p(π|x) is

not a valid probability distribution. In decoding, we also experi-
ment with Eesen’s T.fst. The WERs obtained with different T.fst in
decoding are shown in Table 5. Decoding with the corrected T.fst
performs slightly better. Moreover, as shown in Table 6, when using
the corrected T.fst, the decoding graph (TLG) size is smaller and the
decoding speed is faster.

In our experiments, we find that the alignments from CTC-CRFs
are similar to those from CTC, with peaks of symbols. Some useful
techniques for CTC decoding [14] could be applied for CTC-CRFs.

5. CONCLUSIONS

We propose a framework for single-stage acoustic modeling based
on CRFs with CTC topology. CTC-CRFs achieve competitive re-
sults on WSJ, Switchboard and Librispeech datasets. Future work
includes using other units with larger context (e.g. bi-phones, bi-
chars, subwords), and exploring new potential function φ.
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