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ABSTRACT

This paper describes a novel end-to-end automatic speech recogni-
tion (ASR) method that takes into consideration long-range sequen-
tial context information beyond utterance boundaries. In sponta-
neous ASR tasks such as those for discourses and conversations,
the input speech often comprises a series of utterances. Accord-
ingly, the relationships between the utterances should be leveraged
for transcribing the individual utterances. While most previous end-
to-end ASR methods only focus on utterance-level ASR that handles
single utterances independently, the proposed method (which we
call “large-context end-to-end ASR”) can explicitly utilize relation-
ships between a current target utterance and all preceding utterances.
The method is modeled by combining an attention-based encoder-
decoder model, which is one of the most representative end-to-end
ASR models, with hierarchical recurrent encoder-decoder models,
which are effective language models for capturing long-range se-
quential contexts beyond the utterance boundaries. Experiments on
Japanese discourse speech tasks demonstrate the proposed method
yields significant ASR performance improvements compared with
the conventional utterance-level end-to-end ASR system.

Index Terms— End-to-end automatic speech recognition, atten-
tion based encoder-decoder, hierarchical recurrent encoder-decoder

1. INTRODUCTION

In the automatic speech recognition (ASR) field, end-to-end ASR
methods that directly model a generative probability of a text given
an input speech have attracted much attention. While classical ASR
methods have introduced three component models, i.e., an acoustic
model, a language model, and a pronunciation model, the end-to-end
ASR methods only use a single model that integrates them. In fact,
in the classical ASR methods, it is difficult to optimize the overall
system since each component models were independently trained.
On the other hand, the end-to-end ASR methods can learn the overall
system in one step.

There are several modeling methods for performing end-to-end
ASR. One of the main ones is connectionist temporal classification,
in which a blank token is leveraged for handling differences in the
length of input acoustic features and output tokens [1–5]. Another is
attention based encoder-decoder models, which are language mod-
els conditioned on input speech. In this method, an attention mech-
anism is utilized for automatically determining which acoustic fea-
tures should be used to predict the next token [6–11]. Also, recurrent
neural network (RNN) transducers and recurrent neural aligners have
been developed for use in online decoding [12, 13].

However, previous end-to-end ASR methods have mainly fo-
cused on utterance-level ASR in which each utterance is indepen-
dently transcribed. Therefore, they can not capture relationships

between utterances even when discourse speech and conversation
speech, which comprise a series of utterances, have to be transcribed.
In language modeling, it has been reported that long-range linguis-
tic context information beyond utterance boundaries is effective for
improving perplexity and ASR performance [14–17]. Therefore, im-
provements in end-to-end ASR systems can also be expected by ex-
plicitly capturing long-range sequential contexts beyond utterance
boundaries.

In this paper, we propose a large-context end-to-end ASR
method that is suitable for transcribing a series of utterances. Our
idea is to combine attention-based encoder-decoder models with
hierarchical recurrent encoder-decoder models, which are language
models that effectively capture long-range sequential contexts be-
yond utterance boundaries [18–20]. These two models can be
naturally integrated since both are language models conditioned
on different contexts. The proposed method makes it possible to
utilize not only a target utterance’s speech information but also
all preceding transcribed text information for transcribing a target
utterance. The method also achieves effective ASR decoding of a
series of utterances by repeatedly feeding the transcribed text of an
utterance just before a target utterance and acoustic features of the
target utterance.

The method is closely related to context-dependent utterance-
level end-to-end ASR methods. Various auxiliary features such
as speaker information or language information have been utilized
for enhancing utterance-level end-to-end ASR methods [21–23].
The large-context end-to-end ASR method can be regarded as an
utterance-level end-to-end ASR method that utilizes all transcribed
texts as auxiliary features in an end-to-end manner. Long-range con-
texts beyond utterance boundaries have also been recently utilized in
neural conversation models [18–20] and neural machine translation
models [24–26] that are similar generative models to the end-to-end
ASR models. Actually, the large-context end-to-end ASR method is
inspired by them. To the best of our knowledge, however, our work
constitutes the initial study on end-to-end ASR methods that can
handle long-range contexts beyond the utterance boundaries.

In experiments on discourse speech tasks using a corpus of
spontaneous Japanese, we demonstrated the proposed method yields
significant ASR performance improvements compared with the
utterance-level end-to-end ASR system.

2. UTTERANCE-LEVEL END-TO-END AUTOMATIC
SPEECH RECOGNITION

This section briefly describes utterance-level end-to-end ASR us-
ing attention-based encoder-decoder modeling [6–11]. It models a
generative probability of a text W = {w1, · · · , wN} given speech
X = {x1, · · · ,xM}, where wn is the n-th token in the text and xm
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Fig. 1. Network structure of utterance-level end-to-end ASR system.

is the m-th acoustic feature in the speech. N is the number of tokens
in the text and M is the number of acoustic features in the speech.
In attention-based encoder-decoder modeling, the generative proba-
bility ofW is defined as

P (W |X,Θe2e) =

N∏
n=1

P (wn|w1, · · · , wn−1,X,Θe2e), (1)

where Θe2e represents the model parameter sets. P (wn|w1, · · · ,
wn−1, X , Θe2e) can be computed using a speech encoder and an
attention decoder, both of which are composed of neural networks.

2.1. Network Structure

Fig. 1 shows the network structure of the utterance-level end-to-end
ASR system. The speech encoder converts acoustic features into the
hidden representationsH . These are defined as

H = SpeechEnc(X;Θe2e), (2)

where SpeechEnc() is a function of the speech encoder, which is
usually modeled by bidirectional RNNs.

The attention decoder computes the generative probability of a
token from preceding tokens and the hidden representations of the
speech using an attention mechanism. The predicted probabilities of
the n-th token wn are calculated as

P (wn|w1, · · · , wn−1,X,Θe2e)

= AttenDec(w1, · · · , wn−1,H;Θe2e), (3)

where AttenDec() is a function of the attention decoder, which is
usually modeled by unidirectional RNNs and an attention mecha-
nism.

2.2. Training

In utterance-level end-to-end ASR, a model parameter set can
be optimized from the utterance-level training data set De2e =
{(X1,W 1), · · · , (XT , W T )}, where T is the number of utter-
ances in the training data set. The parameter sets are optimized
by

Θ̂e2e = argmin
Θe2e

−
T∑

t=1

Nt∑
n=1

logP (wt
n|wt

1, · · · , wt
n−1,X

t,Θe2e),

(4)
where wt

n is the n-th token for the t-th utterance andXt is the acous-
tic features in the t-th utterance. N t is the number of tokens in the
t-th utterance.
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Fig. 2. Network structure of large-context end-to-end ASR system.

3. LARGE CONTEXT END-TO-END AUTOMATIC
SPEECH RECOGNITION

This section details a large context end-to-end ASR system com-
posed of attention-based encoder-decoders integrated with hierarchi-
cal recurrent encoder-decoders. The large context end-to-end ASR
can effectively handle a series of utterances, i.e., conversation-level
data or discourse-level data, while utterance-level end-to-end ASR
handles each utterance independently. The proposed method mod-
els a generative probability of a sequence of utterance-level texts
W = {W t, · · · ,W T } given a sequence of utterance-level speech
X = {X1, · · · ,XT }, where W t = {wt

1, · · · , wt
Nt} is the t-th

utterance-level text composed of tokens andXt = {xt
1, · · · ,xt

Mt}
is the t-th utterance-level speech composed of acoustic features. T is
the number of utterances in a series of utterances, N t is the number
of tokens in the t-th text and M t is the number of acoustic features
in the t-th utterance. The generative probability ofW is defined as

P (W|X ,Θle2e) =

T∏
t=1

P (W t|W 1, · · · ,W t−1,Xt,Θle2e)

=

T∏
t=1

Nt∏
n=1

P (wt
n|wt

1, · · · , wt
n−1,

W 1, · · · ,W t−1,Xt,Θle2e),

(5)

where Θle2e is the model parameter set. P (wt
n|wt

1 , · · · , wt
n−1,

W 1, · · · ,W t−1 ,Xt,Θle2e) can be computed using a hierarchical
text encoder, a speech encoder, and an extended attention decoder.

3.1. Network Structure

Fig. 2 shows the network structure of the large-context end-to-end
ASR system. The hierarchical text encoder converts all preceding
texts into a continuous vector. The t-th continuous vector Ct is de-
fined as

Ct = HierarchicalTextEnc(W 1, · · · ,W t−1;Θle2e),

= HierarchicalTextEnc(W t−1,Ct−1;Θle2e)
(6)

where HierarchicalTextEnc() is a function of the hierarchical
text encoder. The speech encoder converts an utterance into con-
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tinuous vectors. The t-th speech continuous vectors Ht is defined
as

Ht = SpeechEnc(Xt;Θle2e), (7)

where SpeechEnc() is a function of the speech encoder. The ex-
tended attention decoder computes the generative probability of a
token from preceding tokens in a target utterance, the continuous
vector of all preceding texts, and hidden vectors of the target speech.
The generative probability of wt

n is calculated as

P (wt
n|wt

1, · · · , wt
n−1,W

1, · · · ,W t−1,Xt,Θle2e)

= ExtAttenDec(wt
1, · · · , wt

n−1,C
t,Ht;Θle2e), (8)

where ExtAttenDec() is a function of the extended attention de-
coder.

3.2. Implementation

Hierarchical text encoder: The hierarchical text encoder is con-
structed from a token-level encoder and an utterance-level encoder.
In the token-level encoder, each token is converted into a continuous
vector as

wt−1
n = Embed(wt−1

n ;θw), (9)

where Embed() is a function to convert a token into a continuous
vector and θw is a trainable parameter. In the token-level encoder, all
tokens in each text are embedded into a continuous vector as

ut−1
n = Recurrent(wt−1

1 , · · · ,wt−1
n ;θu)

= Recurrent(wt−1
n ,ut−1

n−1;θu),
(10)

where Recurrent() is a function based on unidirectional RNNs and
θu is a trainable parameter. Therefore, the entire information of a
single text can be embedded into ut−1

Nt−1 , which is expressed as

U t−1 = Recurrent(W t−1;θu)

= ut−1
Nt−1 .

(11)

In addition, in order to capture multiple preceding texts, continuous
vectors extracted from individual preceding texts are embedded into
a continuous vector using the utterance-level decoder. A continuous
vector that embeds all information from an initial text into the t− 1-
th text is defined as

Ct = Recurrent(U1, · · · ,U t−1;θc)

= Recurrent(U t−1,Ct−1;θc),
(12)

where θc is the trainable parameter.
Speech encoder: In a speech encoder, utterance-level acoustic fea-
tures are converted into hidden vector sequences. The t-th hidden
vector sequenceHt = {ht

1, · · · ,ht
Kt} is produced by

ht
k = BiRecurrent(xt

1, · · · ,xt
Mt , k;θh), (13)

where BiRecurrent() is the bidirectional RNNs and θh is the train-
able parameter. Kt is the length of the subsampled acoustic features
in the t-th utterance.
Extended attention decoder: In an extended attention decoder,
which corresponds to a conditional generative model, the history of
both preceding tokens in the current utterance and all preceding ut-
terances is first summarized as a continuous vector. The continuous

vector that summarizes from the initial token in the initial utterance
to the n-th token in the t-th utterance is defined as

vt
n = Recurrent(zt

1, · · · ,zt
n;θv)

= Recurrent(zt
n,v

t
n−1;θv),

(14)

zt
n = [wt

n
>
,Ct>]>, (15)

where θv is the model parameter. The continuous vector is used for
summarizing hidden speech vectors as a continuous vector. The t-th
continuous vector in the t-th utterance is calculated as

dt
n =

Kt∑
k=1

exp Atten(ht
k,v

t
n;θd)∑Kt

k′=1 exp Atten(h
t
k′ ,v

t
n;θd)

ht
k, (16)

where Atten() is the function for computing attention weights and
θd is the trainable parameter. A context vector for estimating the t-th
token in the t-th utterance is produced by

stn = NonLinear([vt
n
>
,dt

n
>
,Ct>]>;θs), (17)

where NonLinear() is a non-linear transformational function and θs
is the trainable parameter. Predicted probabilities of the n-th token
in the t-th utterance are produced by

P (wt
n|wt

1, · · · , wt
n−1,

W 1, · · · ,W t−1,Xt,Θ) = SOFTMAX(stn;θo), (18)

where SOFTMAX() is a softmax transformational function and θo is
the trainable parameter.

3.3. Training

In the large context end-to-end ASR, a model parameter set that in-
cludes all trainable parameters can be summarized as

Θle2e = {θw,θu,θc,θh,θv,θd,θs,θo}. (19)

The model parameter set can be optimized from training data set
Dle2e = {(X 1,W1), · · · , (XD,WD)}, where D is the number
of conversation-level or discourse-level data in the training data set.
The d-th data element is represented as X d = {X1,d, · · · ,XTd,d}
and Wd = {W 1,d, · · · , W Td,d}, where W t,d = {wt,d

1 , · · · ,
wt,d

Nt,d}. The model parameter set is optimized by

Θ̂le2e = argmin
Θle2e

−
D∑

d=1

Td∑
t=1

Nt,d∑
n=1

logP (wt,d
n |wt

1, · · · , wt,d
n−1,

W 1,d, · · · ,W t−1,d,Xt,d,Θle2e). (20)

Actually, most of the trainable parameters are with the same as those
in utterance-level end-to-end ASR. In order to efficiently optimize
these parameters, those optimized in the utterance-level end-to-end
ASR system should be used as the initial parameters in the large-
context end-to-end ASR systems.

3.4. ASR Decoding

ASR decoding of a sequence of utterance-level texts from a sequence
of utterance-level acoustic features using the large context end-to-
end ASR is achieved by recursively conducting utterance-level de-
coding. The ASR decoding problem for the t-th utterance is defined
as

Ŵ t = argmax
W t

P (W t|Ŵ 1, · · · , Ŵ t−1,Xt,Θle2e), (21)
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Table 1. Experimental data sets.
Data size Number of Number of Number of

(Hours) discourses utterances characters
Train 512.6 3,181 413,240 13,349,780
Valid 4.8 33 4,166 122,097
Test 1 1.8 10 1,272 48,064
Test 2 1.9 10 1,292 47,970
Test 3 1.3 10 1,385 32,089

where Ŵ t−1 is ASR output of the t−1-th utterance. Therefore, Ŵ t

is recursively used for decoding the text of the t + 1-th utterance.
Thus, the computation cost of ASR decoding using the large-context
end-to-end ASR is almost comparable to that using utterance-level
end-to-end ASR.

4. EXPERIMENTS

In experiments, we used the Corpus of Spontaneous Japanese (CSJ)
[27]. We divided the CSJ into a training set (Train), a validation set
(Valid), and three test sets (Test 1, 2, and 3). The validation set was
used for optimizing several hyper parameters. Each discourse-level
speech was segmented into utterances in accordance with previous
work [28]. This paper used characters as the tokens. Details of the
data sets are shown in Table 1.

4.1. Setups

For evaluation purposes, we constructed an utterance-level end-to-
end ASR system and the large-context end-to-end ASR system. In
addition, we constructed both systems without introducing a speech
encoder. Note that the utterance-level end-to-end ASR system
without a speech encoder is regarded as an RNN-based language
model [29, 30] and the large-context end-to-end ASR system with-
out a speech encoder is regarded as a discourse-context language
model based on a hierarchical recurrent encoder-decoder [17].

In the hierarchical text encoder, a 1-layer unidirectional long
short-term memory RNN (LSTM-RNN) with 512 units was intro-
duced into both the token-level encoder and the utterance-level en-
coder. In the speech encoder, we used 40 log mel-scale filterbank co-
efficients appended with delta and acceleration coefficients as acous-
tic features; the frame shift was 10 ms. We stacked 7 consecutive
acoustic features as the input of the speech encoder where we formed
them on every 30 ms for subsampling. We used a sigmoid non-linear
layer at the bottom layer and a stacked 4-layer bidirectional LSTM-
RNN with 512 units. In the attention decoder and the extended atten-
tion decoder, a unidirectional LSTM-RNN with 512 units was intro-
duced. For the attention mechanism, we used global attention [31].
The output unit size, which corresponds to the number of characters
in the training set, was set to 3,084. For training these models, we
used mini-batch stochastic gradient descent with gradient norm clip-
ping 1.0. In each LSTM-RNN, we used variational dropout where its
rate was set to 0.2 for the speech encoder and 0.4 for the hierarchical
text encoder, the attention decoder and the extended attention de-
coder. Initial parameters in the utterance-level end-to-end ASR were
randomly initialized. Optimized parameters in the utterance-level
end-to-end ASR system were partly used for the initial parameters
in the large-context end-to-end ASR systems. For the mini-batch
training, we truncated each lecture to 30 utterances. Mini-batch size
was set to 2. For ASR decoding using both the utterance-level and
the large-context end-to-end ASR, we used a beam search algorithm

Table 2. Character-level perplexity results.
Speech Test 1 Test 2 Test 3
encoder

Utterance-level ASR w/o 12.48 14.13 14.75
Large-context ASR w/o 11.62 12.95 13.26
Utterance-level ASR w 1.35 1.28 1.32
Large-context ASR w 1.31 1.25 1.28

Table 2. Character error rate results (%).
Preceding Test 1 Test 2 Test 3
utterances

Utterance-level ASR - 11.5 8.8 10.8
Large-context ASR Hypotheses 10.7 8.1 10.0
Large-context ASR Oracle texts 10.6 8.0 9.8

in which the beam size was set to 20.

4.2. Results

First, we evaluated whether or not the long-range contexts can
improve performance in correctly predicting transcriptions using
character-level perplexity, which is a measurement of language
models. Table 2 shows the character-level perplexity results obtained
with utterance-level end-to-end ASR and large-context end-to-end
ASR, both with and without a speech encoder. The results show that
the large-context end-to-end ASR without the speech encoder out-
performed the utterance-level end-to-end ASR without the speech
encoder. This indicates that large-context linguistic information
improves performance in correctly predicting transcriptions. The
large-context end-to-end ASR with the speech encoder also outper-
formed the utterance-level end-to-end ASR with the speech encoder.
This confirms that the long-range contexts are also effective in im-
proving the end-to-end ASR performance. Next we evaluated ASR
performance in terms of character error rate. Table 3 shows the ex-
perimental results obtained for both utterance-level end-to-end ASR
and large context end-to-end ASR. We also evaluated the large-
context ASR using oracle texts of preceding utterances to reveal
whether or not recognition errors of the preceding utterances affect
the ASR performance. The results show that the large-context end-
to-end ASR yielded significant ASR performance improvements
compared with the utterance-level end-to-end ASR. This confirms
that the long-range contexts were an effective way to improve ASR
performance. Actually, a slight performance improvement was ob-
tained by using the oracle texts of the preceding utterances. This
indicates that the large-context end-to-end ASR was slightly affected
by recognition errors of the preceding utterances.

5. CONCLUSIONS

This paper proposed large-context end-to-end automatic speech
recognition (ASR) methods that can consider long-range sequential
context information beyond utterance boundaries in an end-to-end
manner. The proposed method is modeled by combining attention-
based encoder-decoder models with hierarchical recurrent encoder-
decoder models. This achieves to utilize not only a target utterance’s
speech information but also all preceding transcribed text informa-
tion for estimating a generative probability of a target utterance’s
text. Experimental results showed the proposed method is effective
in improving ASR performance of a series of utterances compared
with conventional utterance-level end-to-end ASR methods.
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