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ABSTRACT

Recent work on neural networks with probabilistic parameters has
shown that parameter uncertainty improves network regularization.
Parameter-specific signal-to-noise ratio (SNR) levels derived from
parameter distributions were further found to have high correlations
with task importance. However, most of these studies focus on tasks
other than automatic speech recognition (ASR). This work investi-
gates end-to-end models with probabilistic parameters for ASR. We
demonstrate that probabilistic networks outperform conventional de-
terministic networks in pruning and domain adaptation experiments
carried out on the Wall Street Journal and CHiME-4 datasets. We use
parameter-specific SNR information to select parameters for pruning
and to condition the parameter updates during adaptation. Experi-
mental results further show that networks with lower SNR parame-
ters (1) tolerate increased sparsity levels during parameter pruning
and (2) reduce catastrophic forgetting during domain adaptation.

Index Terms— end-to-end speech recognition, parameter un-
certainty, pruning, adaptation

1. INTRODUCTION

Recently proposed end-to-end models for ASR [1, 2, 3, 4, 5, 6, 7, 8]
present a significant simplification over DNN-HMM hybrids [9, 10]
in both model architecture and training process. End-to-end models
transcribe input speech to output text within a single neural network
that is optimized in a single training stage. In contrast, hybrids con-
sist of a combination of deep neural networks (DNNs) and hidden
Markov models (HMMs) that are optimized disjointly in multiple
training stages.

End-to-end models are parametric models: they provide tunable
parameters for optimization, which correspond to the weights and
biases of neural network units. Conventional end-to-end models use
deterministic parameters, i.e. each parameter is a real value. While
deterministic parameters encode the parameter magnitude, there is
no direct encoding of the parameter uncertainty or the parameter
importance to solve the task it was trained on. However, parame-
ter importance is valuable information: potential use includes selec-
tive parameter pruning for saved computation or selective parameter
fine-tuning to avoid catastrophic forgetting [11] in continual learning
scenarios (e.g. speaker or domain adaptation).

Recent work has explored parameter uncertainty in neural net-
works by encoding parameters in a probabilistic fashion [12, 13, 14].
Probabilistic neural networks sample parameters from probability
distributions learned on training data such that each parameter ex-
hibits a learned degree of uncertainty. The inherent parameter un-
certainty makes probabilistic networks less sensitive to parameter
perturbations and less prone to overfitting [12, 14]. The relation be-
tween the magnitude of a parameter and its uncertainty allows one
to establish parameter-specific SNR levels. Previous studies show

that there is a high correlation between parameter SNR and param-
eter importance as demonstrated in pruning experiments for tasks
other than ASR [12, 13]. To the best of our knowledge, only one
study investigated probabilistic neural networks for end-to-end ASR
[14]. The probabilistic network was derived in a variational infer-
ence framework from a Bayesian perspective. The evaluation was
carried out using a single probabilistic network on the TIMIT dataset
with a focus on parameter pruning.

This work proposes an alternative derivation of probabilistic net-
works from a parameter perspective, without requiring a Bayesian
interpretation of the model. We also extend the set of ASR tasks to
include domain adaptation from clean speech to noisy speech. In or-
der to prevent forgetting of the original task, we propose the use of a
SNR-based regularization scheme to condition parameter updates on
parameter importance. Furthermore, this work evaluates probabilis-
tic networks with distinct SNR levels. We compare how networks
with different SNR levels tolerate pruning of parameters and how
the level of catastrophic forgetting changes across these networks
during domain adaptation.

2. PROBABILISTIC END-TO-END MODELS

2.1. Random variable parameters

We consider end-to-end models for ASR that transcribe speech input
to text output with a single neural network. A conventional end-to-
end model consists of a set of n = 1, ..., N deterministic parameters
θ = {θ1, ..., θN} which represent the weights and biases of the neu-
ral network units. In this work, we consider probabilistic parameters
Θ = {Θ1, ...,ΘN} for our model. While there are many possible
ways to define the random variables Θn, we choose a Gaussian dis-
tribution such that Θ ∼ N (µ, σ). Note that every parameter Θn

is described with a parameter-specific mean µn and standard devi-
ation σn. The mean and standard deviation represent the expected
parameter value and its uncertainty.

Similar to related work [12, 13, 14], we define a parameter-
specific signal-to-noise ratio:

SNRn =
|µn|
σn

(1)

The results of previous studies [12, 13, 14] imply that SNR levels
can be used to identify the important parameters that are useful for
solving a task.

2.2. Training with random variables

The training process optimizes both the mean µ ∈ RN and standard
deviation σ ∈ RN of the n = 1, ..., N network parameters. The
standard deviation σ is parameterised with the proxy parameter β ∈
RN and the softplus function [15] σ = log(exp(β) + 1) to ensure
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that σ is positive. We use a training procedure similar to [12] that
updates network parameters as described in Eq. (2)-(5):

ε ∼ N (0, 1) (2)

θ = µ+ log(exp(β) + 1) · ε (3)

L = f(θ, x, y) (4)

µ′, β′ ← optimizer(µ, β,∇Lµ,∇Lβ) (5)

The following procedure is repeated for every mini batch: First,
noise samples ε ∈ RN are drawn from a standard normal distri-
bution (Eq. (2)). The noise samples are scaled by σ and shifted by µ
to compute the parameters θ ∈ RN (Eq. (3)). For the forward pass,
the parameters θ and the network input x and target labels y are used
to compute the loss L (Eq. (4)). For the backward pass, the gradients
∇Lµ,∇Lβ are computed and the parameters µ, β are updated with
an optimizer (Eq. (5)).

The first two steps described in Eq. (2) and (3) are referred to
as the ”reparameterization trick” in the literature [16] and yield the
same effect as sampling θ from N (µ, β), but they keep the sam-
pling operation differentiable wrt. µ, β. Training with probabilistic
parameters is not different from training with deterministic param-
eters with respect to the loss function (Eq. (4)) and the optimizer
(Eq. (5)). Note that the loss function and the optimizer can be of
arbitrary choice.

2.3. Related work

Probabilistic neural network models have been mostly explored from
a variational inference perspective [12, 13, 14, 17]. The embed-
ding in a Bayesian framework allows these approaches to introduce
additional loss terms that are interpreted as parameter complexity
cost terms [12, 13] or minimum description length cost terms [14,
17]. In contrast, this work develops probabilistic networks from a
parameter-based perspective, and we do not develop additional loss
terms by a Bayesian interpretation of the network.

To the best of our knowledge, only one study evaluated proba-
bilistic networks for end-to-end ASR [14]. This study used a long
short-term memory (LSTM)-based Connectionist Temporal Classifi-
cation (CTC) model with 140k parameters on the 5h TIMIT dataset.
The effect of parameter pruning was evaluated for a single proba-
bilistic network, and no adaptation scenario was considered. In con-
trast, this study evaluates multiple probabilistic networks with dif-
ferent SNR levels for both pruning and domain adaptation scenarios.
Even the non-ASR studies investigated only SNR-based pruning, but
no continual learning scenarios such as domain adaptation.

Probabilistic networks with Gaussian parameters are closely re-
lated to the weight noise regularizer for recurrent neural networks
(RNNs) [18]. This regularizer adds noise from a normal distribution
N (0, σg) to the network parameters before the forward pass. The
standard deviation σg is a single scalar hyperparameter used for all
network parameters and is not updated during training [19, 20]. In
contrast, we use a separate standard deviation per parameter and per-
form gradient-based updates on the standard deviation in training.

3. EXPERIMENTAL SETUP

3.1. Datasets

All experiments are carried out as ASR tasks on the Wall Street Jour-
nal (WSJ) [21] and CHiME-4 [22] datasets presented in Table 1.
The WSJ dataset provides single channel read speech data recorded
in clean conditions. The CHiME-4 dataset provides read speech

Dataset Subset # hours Comment

WSJ train si284 81.0 -
WSJ test dev93 1.0 -
WSJ test eval92 0.7 -
CHiME-4 tr05 simu real 18.0 only CH5
CHiME-4 dt05 real 2.5 only CH5
CHiME-4 et05 real 2.0 only CH5

Table 1. Datasets used for experimentation.

data recorded from a 6-channel tablet in noisy conditions (bus, street
junction, cafe and pedestrian area). In this work, we only use the
channel 5 data that leads to the lowest error rates on CHiME-4.

The audio data was pre-processed into 123-dimensional filter-
bank features (25ms frames, 10ms frame shift, 40 Mel-spaced fil-
terbanks, energy coefficient, 1st and 2nd order delta) and normal-
ized to zero-mean and unit-variance per sample. Both the WSJ and
CHiME-4 datasets use the same alphabet of 59 units (characters, dig-
its etc.) as output labels which were obtained with the EESEN pre-
processing routines [3]. The character error rate (CER) is used as the
performance metric.

3.2. Model architecture

All models share the same basic architecture: 5 layers of bidi-
rectional LSTMs [23] with 320 units in each direction and a final
640x59 projection to the output labels. The deterministic models use
default LSTM units and consist of a parameter set θD with LSTM
weights wLSTM , biases bLSTM and projection weights wPROJ

(Eq. (6), ∼11M parameters).

θD = {wLSTM , bLSTM , wPROJ} (6)

The probabilistic models use LSTMs with Gaussian weights and
consist of a parameter set θP with LSTM weight means µLSTM , pa-
rameterised weight standard deviations βLSTM , biases bLSTM and
projection weights wPROJ (Eq. (7), ∼22M parameters).

θP = {µLSTM , βLSTM , bLSTM , wPROJ} (7)

We initializewLSTM , µLSTM andwPROJ with the Xavier uniform
initialization [24] according to Eq. (8). The same random seed is
used to ensure that probabilistic and deterministic models start train-
ing with identical weight and weight mean, i.e. wLSTM = µLSTM .
All biases bLSTM are initialized to 0. The parameterized standard
deviation βLSTM is initialized according to Eq. (9). This initializa-
tion results in an average SNR of 1.0 for the LSTM weight parame-
ters. We find that this SNR value gives the same convergence speed
during training as a network that uses the deterministic parameters.
Networks with lower SNR initializations take longer to converge due
to their high noise level.

Aij ∼ U
(
−
√

6

i+ j
,

√
6

i+ j

)
, A ∈ Ri×j (8)

Bij = log

(
exp(

1

2

√
6

i+ j
)− 1)

)
, B ∈ Ri×j (9)

3.3. Baseline training

The baseline deterministic models D/WSJ, D/CHiME and D/MIX
use deterministic LSTM units (Eq. (6)); and are trained on train si284,
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tr05 simu real and the combined train si284 + tr05 simu real sub-
sets respectively. The probabilistic models P/WSJ/λβ use LSTMs
with Gaussian weights (Eq. (7)) and are trained on train si284. All
models are trained with the CTC loss function LCTC [25] and
the Adam optimizer (learning rate 1e-3) [26] for 25 epochs, and
the model from the epoch with the lowest CER on test dev93 is
selected for evaluation. For the probabilistic models, we enforce
lower SNR parameters by using weight decay Lβ = ||β||22 on the
parameterized weight standard deviation βLSTM . The decay term
Lβ is scaled by the factor λβ such that the complete loss function
is L = LCTC + λβLβ . We tune the hyperparameter λβ by a grid
search in the range 1e-7 to 1e-5. Three models with λβ = 0, 1e-6
and 4e-6 are selected for evaluation. The model P/WSJ/0 is the
baseline probabilistic model, the model P/WSJ/1e-6 achieves the
lowest CER of all probabilistic models and the model P/WSJ/4e-6
achieves similar CER compared to P/WSJ/0 but with lower SNR.

3.4. Testing

All our models are tested with strict end-to-end criteria and without
the use of external language models. The CTC output is decoded
in a greedy fashion: at every time step, the label with the highest
probability is selected. The probabilistic models are tested with the
mean weights µLSTM , i.e. the LSTM parameters are not sampled
during testing. The interested reader is referred to related work for
experiments that explore parameter sampling during testing [12].

3.5. Pruning

The pruning experiment is carried out on the models that were
trained on train si284, i.e. D/WSJ, P/WSJ/0, P/WSJ/1e-6 and
P/WSJ/4e-6. The LSTM weight parameters, which account for
> 99% of the model parameters, are pruned while the rest of the
model parameters is left unchanged. For the deterministic mod-
els, the LSTM weights wLSTM are ordered by magnitude and the
lowest X percent of magnitude weights are pruned, i.e. set to zero.
For the probabilistic models, the LSTM mean weights µLSTM are
ordered by SNR and the lowest X percent of SNR weight means are
pruned. The models are tested on test dev93 without any retraining
after pruning. The probabilistic models use the LSTM mean weights
µLSTM for testing.

3.6. Adaptation

The adaptation experiment is carried out on the following mod-
els that were trained on train si284: D/WSJ, P/WSJ/0, and
P/WSJ/4e-6. The models were originally trained on clean speech
data from WSJ, and now they are adapted to noisy speech data from
the CHiME-4 dataset by further training on the dt05 real subset.
The models are adapted for 25 epochs with the CTC loss LCTC and
the Adam optimizer (learning rate 1e-3). Note that we use the same
number of epochs and learning rate for adaptation as during baseline
training. This strategy is different from conventional adaptation
setups that use fine-tuning with fewer epochs and smaller learning
rates for adaptation (e.g. [27]). In order to analyze the effect of
Gaussian weights, we only adapt the weights wLSTM (deterministic
models) or the weight mean µLSTM (probabilistic models) of the
LSTM cells. The biases bLSTM and the projection weights wPROJ

are left unchanged. For the deterministic model, we propose an
auxiliary L2 penalty LL2 between updated weight value wLSTM

and pre-adaptation weight value wLSTM∗:

LL2 = (wLSTM − wLSTM∗)2 (10)

WSJ CHiME-4

Model
test

eval92
test

dev93
et05
real

dt05
real

D/MIX 6.1 8.5 33.4 21.9
D/CHiME 17.1 21.7 37.2 26.6
D/WSJ 6.5 8.9 57.7 45.3
P/WSJ/0 6.4 8.8 56.6 44.5
P/WSJ/1e-6 6.1 8.5 55.9 43.4
P/WSJ/4e-6 6.4 9.0 55.9 44.0

Single-E2E [28] - - 40.9 29.5
ESPnet [29] 7.6 10.1 - -

Table 2. Baseline CER [%] results for clean speech (WSJ) and noisy
speech (CHiME-4). The lowest CER on each subset is printed bold.

The L2 penalty prevents catastrophic forgetting by forcing weight
updates to stay close to the original value. For the probabilistic mod-
els, we include an auxiliary SNR penalty LSNR between updated
mean weight value µLSTM and pre-adaptation mean weight value
µLSTM∗:

LSNR = SNR(µLSTM − µLSTM∗)2 (11)

The inclusion of the SNR value in the loss term penalizes updates on
parameters with higher SNR, which are assumed to be more impor-
tant than lower SNR parameters to solve the original clean speech
task. Note that besides the use of SNR information, the SNR penalty
from Eq. (11) is similar to the L2 penalty from Eq. (10). The aux-
iliary penalties are scaled with the parameter λaux that is varied be-
tween {0, 0.1, ..., 727.9, 1000.0} in 30 geometrically spaced steps,
and the full loss function for adaptation is L = LCTC +λauxLaux.

4. EXPERIMENTAL RESULTS

4.1. Baselines

The baseline evaluation results on the WSJ and CHiME-4 test
and development sets are reported in Table 2. The deterministic
model D/MIX trained on both clean speech (WSJ) and noisy speech
(CHiME-4) achieves the lowest CER across all evaluation scenarios.
The other models are trained on either clean speech or noisy speech,
and they only achieve low error rates in the same noise conditions
they were trained on.

When considering only models trained on clean speech (WSJ),
the probabilistic models P/WSJ/0 and P/WSJ/4e-6 perform on
par with the deterministic model D/WSJ. The model P/WSJ/1e-6
performs best and achieves up to 6.2% relative CER reduction com-
pared to D/WSJ.

Recent work on end-to-end models with deterministic weights
and without external language models reports similar error rates.
The models from recent work are represented by Single-E2E [28]
(trained on tr05 simu real, channel 5) and ESPnet [29] (trained on
train si284).

4.2. SNR statistics

We compute the SNR statistics on the Gaussian LSTM weights of
the probabilistic models after training and report the results in Ta-
ble 3. Before training, all models were initialized with the same
median SNR level of 1.0 according to Eq. (9). After training, the
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Model Median Mean±Std Min Max

P/WSJ/0 2.9 3.6±2.9 2.7e-6 80.1
P/WSJ/1e-6 1.9 2.3±1.9 4.1e-7 49.6
P/WSJ/4e-6 1.0 1.3±1.1 1.4e-7 41.8

Table 3. SNR statistics for the LSTM weights of the probabilis-
tic models obtained after a completed training on train si284. The
statistics are computed over SNR = |µ

LSTM |/σLSTM .

models show different SNR levels: P/WSJ/4e-6 still shows a me-
dian SNR of 1.0, while the model P/WSJ/0 increases the median
SNR up to 2.9. This indicates that the SNR level is indeed control-
lable by the additional cost term Lβ on the parameterized standard
deviation βLSTM . Interestingly, both models achieve similar CER
during evaluation despite significantly different noise levels.

4.3. Pruning

The pruning results are reported in Figure 1. All probabilistic models
are able to achieve lower error rates with the same sparsity level than
the deterministic model D/WSJ when the sparsity is between 50% to
90%. Probabilistic models with lower SNR tolerate higher sparsity
levels than models with higher SNR, and P/WSJ/4e-6 tolerates
the highest sparsity levels. With a 75% sparsity level, P/WSJ/4e-6
achieves 11.3% CER, which is a relative CER reduction of 58.9%
compared to the 27.5% CER of D/WSJ.
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Fig. 1. Weight pruning results when testing on the WSJ test dev93
subset. All probabilistic models show lower error rates at similar
sparsity levels than the deterministic model D/WSJ. The probabilis-
tic model with the lowest SNR P/WSJ/4e-6 shows the smallest
error rate increase under pruning.

4.4. Adaptation

We evaluate the CER of the adapted models for every epoch of
adaptation on the subsets test eval92 (clean speech) and et05 real
(noisy speech) and report the results in Figure 2. The results show
three tiers of adaptation characteristics. The trade-off between
error rates on clean speech and noisy speech is smallest for the
lower SNR model P/WSJ/4e-6, intermediate for the higher SNR
model P/WSJ/0 and highest for the deterministic model D/WSJ.
In other words, D/WSJ is more prone to forgetting the original clean
speech task than both probabilistic models, and a lower parameter
SNR further reduces forgetting. When allowing for 8.0% CER on
test eval92, then P/WSJ/4e-6 reaches 42.7% CER on et05 real,
while D/WSJ reaches 50.2% CER, a relative reduction of 15%.
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Fig. 2. Adaptation results when adapting networks trained on clean
speech, to noisy speech. Large dots show pre-adaptation error rates.
Black dots denote models adapted with λaux = 0 (no additional
penalty), while colored dots correspond to models with λaux > 0
(L2 or SNR penalty active). Every dot represents a different epoch
of adaptation and a different λaux. The probabilistic networks show
less forgetting on the original clean speech data during adaptation.
The low SNR probabilistic model P/WSJ/4e-6 shows the least
amount of forgetting.

5. CONCLUSION

In this work we evaluated end-to-end models for ASR that use
LSTM units with probabilistic weight parameters. The parameters
are sampled from a Gaussian distribution with a parameter-specific
mean and standard deviation. Despite the probabilistic formulation,
the model is trainable with the same cost function as a model with
deterministic parameters.

Experimental results show that probabilistic models achieved er-
ror rates on par or better than deterministic models. When pruning
weights on an already trained model, the probabilistic models toler-
ated higher sparsity levels at lower error rates than the deterministic
models. Also, during an adaptation experiment from clean to noisy
speech, the probabilistic models showed less forgetting on the orig-
inal clean speech task than deterministic models. A key advantage
of probabilistic models is the availability of the parameter-specific
SNR, which is highly correlated with the importance of a parameter
for the task it was trained on. The parameter-specific SNR helped to
identify less important parameters for pruning and to restrict updates
on important parameters during adaptation.

The average SNR of the end-to-end model parameters is control-
lable by an additional loss term that enforces higher standard devia-
tion. When comparing probabilistic models with different SNR lev-
els, our results show that models with lower SNR exhibit improved
pruning and adaptation characteristics. Future studies include eval-
uating probabilistic neural networks on larger speech datasets; and
using acoustic models that are based on neural network units other
than LSTMs, e.g. convolutional neural networks (CNNs).

6. ACKNOWLEDGEMENTS

This work was partially supported by the European Union’s Horizon
2020 research and innovation program under grant agreement No
644732 and the Samsung Advanced Institute of Technology.

5639



7. REFERENCES

[1] A. Graves and N. Jaitly, “Towards End-To-End Speech Recog-
nition with Recurrent Neural Networks,” in Proceedings of the
31th International Conference on Machine Learning (ICML),
2014, pp. 1764–1772.

[2] A. Hannun et al., “Deep speech: Scaling up End-to-End
Speech Recognition,” arXiv preprint arXiv:1412.5567, 2014.

[3] Y. Miao, M. Gowayyed, and F. Metze, “EESEN: End-to-
end Speech Recognition using Deep RNN Models and WFST-
based Decoding,” in IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU), 2015, pp. 167–174.

[4] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Ben-
gio, “Attention-Based Models for Speech Recognition,” in Ad-
vances in Neural Information Processing Systems 28 (NIPS),
2015, pp. 577–585.

[5] D. Amodei et al., “Deep speech 2: End-to-End Speech Recog-
nition in English and Mandarin,” in Proceedings of the 33rd
International Conference on Machine Learning (ICML), 2016,
pp. 173–182.

[6] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, Attend and
Spell: A Neural Network for Large Vocabulary Conversational
Speech Recognition,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2016, pp.
4960–4964.

[7] L. Lu, X. Zhang, and S. Renals, “On Training the Recurrent
Neural Network Encoder-Decoder for Large Vocabulary End-
to-End Epeech Recognition,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP),
2016, pp. 5060–5064.

[8] S. Kim, T. Hori, and S. Watanabe, “Joint CTC-Attention based
End-to-End Speech Recognition using Multi-task Learning,”
in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2017, pp. 4835–4839.

[9] H. Bourlard and N. Morgan, Connectionist Speech Recogni-
tion: A Hybrid Approach, Kluwer Academic Publishers, 1994.

[10] G. Hinton et al., “Deep Neural Networks for Acoustic Mod-
eling in Speech Recognition: The Shared Views of Four Re-
search Groups,” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[11] M. McCloskey and N. J. Cohen, “Catastrophic Interference in
Connectionist Networks: The Sequential Learning Problem,”
in Psychology of learning and motivation, vol. 24, pp. 109–
165. Elsevier, 1989.

[12] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra,
“Weight Uncertainty in Neural Networks,” in Proceedings
of the 32nd International Conference on Machine Learning
(ICML), 2015, pp. 1613–1622.

[13] M. Fortunato, C. Blundell, and O. Vinyals, “Bayesian Re-
current Neural Networks,” arXiv preprint arXiv:1704.02798,
2017.

[14] A. Graves, “Practical Variational Inference for Neural Net-
works,” in Advances in Neural Information Processing Systems
24 (NIPS), 2011, pp. 2348–2356.

[15] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia,
“Incorporating Second-Order Functional Knowledge for Bet-
ter Option Pricing,” in Advances in Neural Information Pro-
cessing Systems 13 (NIPS), 2001, pp. 472–478.

[16] D. P. Kingma, T. Salimans, and M. Welling, “Variational
Dropout and the Local Reparameterization Trick,” in Advances
in Neural Information Processing Systems 28 (NIPS), 2015, pp.
2575–2583.

[17] G. E. Hinton and D. Van Camp, “Keeping the Neural Net-
works Simple by Minimizing the Description Length of the
Weights,” in Proceedings of the sixth annual conference on
Computational learning theory (COLT), 1993, pp. 5–13.

[18] K.-C. Jim, C. L. Giles, B. G. Horne, et al., “An Analysis of
Noise in Recurrent Neural Networks: Convergence and Gener-
alization,” IEEE Transactions on neural networks, vol. 7, no.
6, pp. 1424–1438, 1996.

[19] E. Battenberg et al., “Exploring Neural Transducers for End-
to-End Speech Recognition,” in IEEE Workshop on Auto-
matic Speech Recognition and Understanding (ASRU), 2017,
pp. 206–213.

[20] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light
Gated Recurrent Units for Speech Recognition,” IEEE Trans-
actions on Emerging Topics in Computational Intelligence, vol.
2, no. 2, pp. 92–102, 2018.

[21] J. Garofalo, D. Graff, D. Paul, and D. Pallett, “CSR-I
(WSJ0) complete, LDC93S6A,” Linguistic Data Consortium,
Philadelphia, 2007.

[22] E. Vincent, S. Watanabe, A. A. Nugraha, J. Barker, and
R. Marxer, “An Analysis of Environment, Microphone and
Data Simulation Mismatches in Robust Speech Recognition,”
Computer Speech & Language, 2016.

[23] S. Hochreiter and J. Schmidhuber, “Long Short-Term Mem-
ory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] X. Glorot and Y. Bengio, “Understanding the Difficulty of
Training Deep Feedforward Neural Networks,” in Proceed-
ings of the Thirteenth International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010, pp. 249–256.

[25] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber,
“Connectionist Temporal Classification: Labelling unseg-
mented Sequence Data with Recurrent Neural Networks,” in
Proceedings of the 23rd International Conference on Machine
learning (ICML), 2006, pp. 369–376.

[26] D. Kingma and J. Ba, “Adam: A Method for Stochastic Opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[27] T. Ochiai, S. Watanabe, S. Katagiri, T. Hori, and J. R. Her-
shey, “Speaker Adaptation for Multichannel End-to-End
Speech Recognition,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2018, pp.
6707–6711.

[28] S. Kim and I. R. Lane, “Recurrent Models for Auditory At-
tention in Multi-Microphone Distant Speech Recognition,” in
Interspeech, 2016, pp. 3838–3842.

[29] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba,
Y. Unno, N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen,
et al., “ESPnet: End-to-End Speech Processing Toolkit,” in
Interspeech, 2018, pp. 2207–2211.

5640


		2019-03-18T11:12:41-0500
	Preflight Ticket Signature




