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ABSTRACT

The tradeoff between word error rate (WER) and latency is very
important for streaming automatic speech recognition (ASR) appli-
cations. We want the system to endpoint and close the microphone
as quickly as possible, without degrading WER. Conventional ASR
systems rely on a separately trained endpointing module, which in-
teracts with the acoustic, pronunciation and language model (AM,
PM, and LM) components, and can result in a higher WER or a larger
latency. In going with the all-neural spirit of end-to-end (E2E) mod-
els, which fold the AM, PM and LM into a single neural network, in
this work we look at folding the endpointer into this E2E model to
assist with the endpointing task. We refer to this jointly optimized
model – which performs both recognition and endpointing – as an
E2E enpointer. On a large vocabulary Voice Search task, we show
that the combination of such an E2E endpoiner with a conventional
endpointer results in no quality degradation, while reducing latency
by more than a factor of 2 compared to using a separate endpointer
with the E2E model.

1. INTRODUCTION

The endpointer is an essential component that is responsible for de-
termining when the user has finished speaking to ensure natural and
fast voice interaction in streaming speech recognition applications
such as voice assistant and voice search. It is desirable to close the
microphone as soon as the user finishes speaking to minimize la-
tency. However, it is also important to avoid cutting off users while
they are still speaking. The errors in endpointing can have drastic
impact on user experience: if the system waits too long to close the
microphone, the user experience feels slow; if the system is too ag-
gressive, the user will gets cutoff, which is also unsatisfactory.

A voice-activity detector (VAD) [1, 2, 3, 4], trained to classify
each frame of audio as either speech or silence, has been widely
used for endpointing. A conventional approach is to close the mi-
crophone as soon as a VAD system observes speech followed by
a long silence interval. However, silence detection and endpoint-
ing are fundamentally different tasks, and the criterion used during
VAD training may not be optimal. In particular, it ignores potential
acoustic cues such as filler sounds, speaking rhythm or fundamental
frequency to inform the decision of whether a human talker intends
to continue speaking after a given pause. In [5, 6], an end-of-query
(EOQ) classifier is trained to directly predict whether or not the user
has finished speaking at a given time. Figure 1 (b) shows an example
of the EOQ targets, namely speech, initial silence, intermediate si-
lence, and final silence. The framewise posteriors of final silence are
thresholded to obtain a hard microphone closing decision. As ob-
served in [5], the EOQ classifier has shown around 100 ms latency
improvement over VAD based endpointer at the same WER.

Fig. 1: An illustration of endpointing for an example utterance (de-
picted in (a)). The end-of-query classifier (depicted in (b)) applies a
separately trained model to the input acoustic frames. The RNN-T
E2E endpointer (depicted in (c)), performs both decoding and end-
pointing. 〈sp〉 denotes the space symbol. 〈/s〉 denotes the end of
utterance detection.

Still, there are at least two drawbacks to using a VAD or EOQ-
based endpointing system. First, both the VAD and EOQ classifiers
make endpointing decisions based solely on acoustic information,
while ignoring information from the language model ([7] explored
decoder events as extra features to gain more information). Sec-
ond, these classifiers are trained independently from the rest of the
components of the ASR pipeline, namely the acoustic model, pro-
nunciation model and language model. In this paper, we focus on an
endpointing solution to address both of these issues by training an
end-to-end (E2E) model to do decoding and endpointing jointly.

There has been a growing interest in building E2E models for
ASR [8, 9, 10, 11, 12, 13, 14]. Such models replace the components
of a traditional speech recognizer (the AM, PM, and LM) with a sin-
gle neural network, thus simplifying the recognition pipeline. An
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important component of many production ASR systems is that the
ASR model must be streaming, that is, the model must emit deci-
sions as the user is speaking and cannot wait until the end of the ut-
terance to perform decoding. While many attention-based encoder-
decoder architectures, including Listen, Attend and Spell (LAS) [8],
have shown promising results [14], these models are not stream-
ing. One such E2E model, the recurrent neural network transducer
(RNN-T) [10, 11], emits decisions per frame and is streaming, and
will thus be the model used in the present work.

Inference in E2E models is performed using beam-search. For
some E2E models (e.g., LAS [8]) decoding terminates when the
model outputs a special end-of-sentence token 〈/s〉. In models such
as RNN-T, however, decoding is terminated when the last frame
of the input has been processed. In this work, in order to enable
joint decoding and endpointing with an RNN-T model, we look to
train the RNN-T model with the end-of-sentence token, which al-
lows us to terminate the beam search when 〈/s〉 has been output as
shown in Figure 1 (c). This allows us to fold endpointing jointly into
the E2E model, minimizing the dependence on an external VAD or
EOQ. Since we have found conventional models achieve better la-
tency with an EOQ rather than VAD [5], as a comparison we show
results when an external EOQ system first filters frames, and then
RNN-T terminates decoding on the last frame.

Our results are conducted on Voice Search task (over 10, 000
hours), where we find that at the optimal operating point, the com-
bination of the EOQ and the E2E endpointer that jointly folding the
endpointer into the RNN-T model provides a median latency of 230
ms compared to using only separate EOQ based endpointer, which
has similar WER but a latency of 500 ms. This shows that by jointly
training the E2E model to decode and endpointer we can halve the
endpointing latency.

The rest of this paper is as follows. In Section 2, we describe
the proposed neural network architecture. The experimental setup is
described in Section 3, while the results are presented in Section 4.
Finally, Section 5 concludes the paper.

2. NEURAL NETWORK ARCHITECTURE

2.1. RNN-T Model

Figure 2 illustrates the architecture for an RNN-Transducer (RNN-
T) [10]. In the architecture, the encoder is analogous to an acoustic
model that receives acoustic feature vectors xt ∈ Rd , while the pre-
diction network acts as a language model that accepts the previous
grapheme label prediction yu−1 as input, and computes an output
vector pu. For each combination of acoustic frame input t and label
u, the encoder outputs ht and the prediction outputs pu are passed
to a joint network to compute output logits and then fed in a soft-
max layer which defines a probability distribution over the set of
output targets. Hence, the RNN-T is often described as an end-to-
end model because it can be configured to directly output graphemes
directly without the aid of an additional external language model.

The conditional probability distribution for RNN-T can be ex-
pressed as:

P (y|x) =
∑

ŷ∈A(x,y)

T∏
t=1

P (ŷt|x1, · · · ,xt, y0, y1, . . . , yu(t−1))

(1)
where xi is a feature vector, which is 80-dimensional log-Mel filter-
bank features for each frame 1 . . . T . We denote the ground-truth
label sequence of length U as y1, y2, . . . , yu where yu ∈ S (S
is the set of grapheme symbols). We use a special symbol, y0 =

Fig. 2: A schematic representation RNN-T.

〈sos〉, which indicates the start of the sequence. For the conve-
nience of formulation, we augment S with an additional blank sym-
bol, 〈b〉, and describe the set of all possible alignments as follows:
ŷ = (ŷ1 . . . ŷT ) ∈ A(x,y), where A(x,y) represents all label se-
quences ŷ ∈ {S ∪ 〈b〉}T such that ŷ is equal to y when 〈b〉 is
removed. With this notation in place, the conditional probability of
labeling given the acoustics P (y|x) then could be obtained by sim-
ply summing over the alignments.

As shown in Equation 1, the probability of seeing some label in
an alignment ŷt is conditioned on the acoustic features up to time
t and the history of non-blank labels, y1 . . . yu(t−1), emitted so far.
The only independence assumption we have made is that the prob-
ability of a partial alignment ŷ1...t up to time t cannot depend on
acoustic features from future frames. This enables us to perform in-
ference in a streaming fashion, alleviating the need to wait for all of
the audio before beginning the computation. This not only speeds
up execution, but also permits us to emit partial recognition results
as the audio is being processed, which enables joint endpointing as
described in the next section.

2.2. RNN-T as an End-to-End Endpointer

To expand RNN-T with endpointing decisions, we incorporate a spe-
cial symbol 〈/s〉 which indicates the end of the utterance as part of
the expected label sequence. The RNN-T model then makes micro-
phone closing decision when top-beam contains 〈/s〉. Therefore, the
model acts jointly as a decoder and an endpointer.

However, mis-prediction of 〈/s〉 could account for much larger
impact on quality than other symbols especially if 〈/s〉 prediction is
too early. Hence, we precisely control posterior of 〈/s〉 in two dif-
ferent aspects when performing beam-search for decoding. First, the
〈/s〉 label is penalized with a positive scale α as shown in Eq 2. By
controlling α, we directly modify the posterior of 〈/s〉 that competes
with other symbols. If we set α greater than 1, extra penalty is added
to 〈/s〉. In this case, the hypothesis including 〈/s〉 has higher cost
than the others in the search beam, so it is less likely to present on
top. Since declaring endpointing decision replies on top hypothesis,
the modification makes endpointing decision less aggressive. On the
contrary, using smaller α makes endpointing more aggressive and
could hurt WER by introducing deletion errors.

Second, we expand the search space with 〈/s〉 only if the mod-
ified posterior is above a predefined threshold β to further reduce
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early endpointing, i.e., 〈/s〉 is added to the search beam only if:

P (〈/s〉 |x1, · · · ,xt, y0, . . . , yu(t−1))
α ≥ β (2)

Sweeping β allows us to discard or allow the 〈/s〉 symbol when ex-
panding the hypotheses during the search. Hence, β determines if
〈/s〉 symbol is allowed to present in the search beam while α affects
the ordering for the hypothesis with 〈/s〉.

3. EXPERIMENTAL DETAILS

3.1. Data Sets

The training set used for the experiments consists of 20 million En-
glish utterances (over 10,000 hours). The training utterances are
anonymized and hand-transcribed, and are representative of Googles
voice search traffic. This data set is created by artificially corrupting
clean utterances using a room simulator, adding varying degrees of
noise and reverberation such that the overall SNR is between 0dB
and 30dB, with an average SNR of 12dB [15]. The noise sources are
drawn from YouTube and daily life noisy environmental recordings.
The main test set we report results on includes 14K anonymized,
hand-transcribed voice search utterances extracted from Google traf-
fic.

3.2. RNN-T Model

All experiments use the Recurrent Neural Network Transducer
(RNN-T) model [10]. The RNN-T models use 80-dimensional log-
Mel features with a frame step of 10 ms computed using a 25ms
window. These features are stacked with 3 frames to the left and
downsampled to a 30ms frame rate. The encoder network architec-
ture consists of 8 long short-term memory LSTMs [16], where each
layer has 2,048 hidden units followed by a 640-dimensional projec-
tion layer. The decoder is 2 LSTM layers with 2,000 hidden units
and a 640-dimensional projection per layer. To stabilize training, we
found it effective to put a layer-norm layer [17] after each LSTM
layer in the encoder and decoder. The encoder and decoder are fed
to a joint-network that has 640 hidden units. The joint network is
fed to a softmax layer, with a total of 76 grapheme units. All RNN-T
models are trained in Tensorflow [18] on 8 × 8 Tensor Processing
Units (TPU) slices with a global batch size of 4,096.

3.3. EOQ based Endpointer

The baseline system consists of an EOQ detector for endpointing de-
cision proposed in [5]. The input acoustic feature vector sequence
consists of 40-dimensional log mel filterbanks with an upper limit of
4 kHz and a frame step of 10 ms using a 25 ms window. The EOQ
classifier uses a convolutional, long short-term memory, deep neural
network (CLDNN) (combination of convolutional, stacked LSTM
and DNN layers) [19]. The features are passed into a frequency con-
volutional layer with a filter width of 8 frequency bands and pooling
with stride 3, followed by a 64-node ReLU DNN layer, a sequence
of two 64-cell LSTM layers, another 64-node ReLU DNN layer, and
a 4-node softmax layer. LSTM-based architectures, and in particular
CLDNNs, have previously been shown to work well for the EOQ
classifier [5]. In the previous experiments we observed around 100
ms gains from using EOQ detector comparing to VAD based end-
pointer. Hence, we use EOQ classifier-based endpointer as our base-
line.

Fig. 3: WER vs median latency for EOQ (blue),E2E endpointer (red)
and combined system (black).

4. RESULTS

In this section we present the experimental results comparing (1) the
EOQ, (2) E2E endpointer and (3) combined system that triggers an
endpointing decision using both EOQ and E2E endpointer, based on
which system triggers first.

The problem of endpointing is to find the best tradeoff between
fast endpointing (measured by latency) and WER. An aggressive
endpointer may provide a faster response at the expense of hurting
WERs, while a passive endpointer may reduce WER but increase la-
tency. Hence, we first report WER vs median latency in Figure 3 for
each system.

For E2E endpointer, the tradeoff is produced by sweeping the
scale α and the threshold β in Equation 2. A larger α means adding
a larger penalty to 〈/s〉, which makes endpointing slower but also
avoids deletions. Similarly, using larger β in Equation 2 avoids ex-
panding 〈/s〉 in the search space, making the endpointing decision
less aggressive. We sweep both parameters jointly to find best oper-
ating point.

Figure 3 shows that E2E endpointer has a better tradeoff between
WER and latency, especially when the latency is close to 200 ms. As
shown in Figure 3, E2E endpointer reduce the median latency down
to 200 ms without significant WER degradation while the WER in-
creases rapidly when latency is lower than that. We obtain α = 2.0
and β = 0.65 in Equation 2 for the optimal point. In Figure 3, the
combined system is dominated by E2E endpointer since it is much
faster than EOQ endpointer.

In Table 1, we compare the final operating points for each sys-
tem. For EOQ baseline, we sweep the endpointing decision thresh-
old and select a WER of 10.9% such that the operating point of the
EOQ system is consistent with our current production traffic [6]. In
addition to WER and median latency, we also report the percentage
of utterances that are actually endpointed and refer it as endpoint-
ing coverage. As shown in Table 1, at this operating point the E2E
endpointer is better than the EOQ and reduces median latency from
500 ms to 200 ms (60% relative improvement). However, while E2E
endpointer is better than EOQ for both latency and WER, it shows
around 10% endpointing coverage loss. This indicates that when
E2E endpointer decides to endpoint, it endpoints very quickly with
much lower latency than the EOQ endpointer, but for a subset of
utterances it has a chance of not endpointing at all. On the other
hand, the combined system compensates for this coverage loss with
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(a) Histogram for EOQ endpointer latency. (b) Histogram for E2E endpointer latency. (c) Histogram for E2E EP + EOQ EP latency.

Fig. 4: Endpointer latency histogram for individual systems.

the aid of EOQ system while still provide fast endpointing decisions
from the E2E endpointer for the majority of the utterances. We still
observe a 270 ms improvement (54% relative improvement) from
the combined system without WER or endpoiting coverage degrada-
tion comparing to EOQ baseline. In the combined system, the E2E
endpointer is the major endpointer that declares decision for 82% of
the utterances while EOQ endpointer covers the reset of 16% of the
utterances. Hence, the combined system can maintain both the high
coverage from the EOQ endpointer and the low latency from the E2E
endpointer.

In this next section, we analyze the latency improvements fur-
ther.

EOQ E2E EP E2E EP + EOQ
WER 10.9% 10.4% 10.9%

median latency 500 ms 200 ms 230 ms
endpointing coverage 97% 85% 98%

Table 1: WER, latency and endpointing coverage for EOQ, E2E
endpointer and combined system.

4.1. Analysis

In this section, we analyze the latency differences of the three sys-
tems. First, Figure 4a shows the histogram for the EOQ endpointer
latency on the utterances that have been actually endpointed. Only
very few utterances have endpointer latency lower than 300ms. The
latency is mainly distributed between 300ms and 1400ms. Figure 4b
shows a similar histogram but for the E2E endpointer latency. In
this case, almost all latency is between 0 to 400ms. In Figure 4c,
we plot the histogram for the E2E plus EOQ endpointer. We could
observe that the majority of the utterances are still within 400 ms
latency by E2E endpointer so the system acts quickly. The long tail
in Figure 4c is expected since EOQ handles small amount of corner
cases with the latency distributed from 600 ms to 1400 ms.

5. CONCLUSIONS

In this work we incorporate an endpointer into a unified end-to-end
RNN-Transducer by jointly training the model to decode and end-
point. By comparing to a separate endpointer, results and analyses
show that joint optimization of the endpointer with the E2E model
reduces latency from 500 ms to 200 ms at the cost of not endpointing

in about 10% of the cases. The combination of an E2E endpointer
and a separate EOQ model acts as fast as the E2E endpointer and
compensates for the endpointing coverage degradation. The final
system reduces latency by half without WER and endpointing cov-
erage degradation.
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