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ABSTRACT

We present two end-to-end models: Audio-to-Byte (A2B) and Byte-
to-Audio (B2A), for multilingual speech recognition and synthesis.
Prior work has predominantly used characters, sub-words or words
as the unit of choice to model text. These units are difficult to scale
to languages with large vocabularies, particularly in the case of mul-
tilingual processing. In this work, we model text via a sequence
of Unicode bytes, specifically, the UTF-8 variable length byte se-
quence for each character. Bytes allow us to avoid large softmaxes
in languages with large vocabularies, and share representations in
multilingual models. We show that bytes are superior to grapheme
characters over a wide variety of languages in monolingual end-to-
end speech recognition. Additionally, our multilingual byte model
outperform each respective single language baseline on average by
4.4% relatively. In Japanese-English code-switching speech, our
multilingual byte model outperform our monolingual baseline by
38.6% relatively. Finally, we present an end-to-end multilingual
speech synthesis model using byte representations which matches
the performance of our monolingual baselines.

Index Terms— multilingual, end-to-end speech recognition,
end-to-end speech synthesis

1. INTRODUCTION

Expanding the coverage of the world’s languages in Automatic
Speech Recognition (ASR) and Text-to-Speech (TTS) systems have
been attracting much interest in both academia and industry [1, 2].
Conventional phonetically-based speech processing systems require
pronunciation dictionaries that map phonetic units to words. Build-
ing such resources require expert knowledge for each language.
Even with the costly human effort involved, many languages do
not have sufficient linguistic resources available for building such
dictionaries. Additionally, the inconsistency in the phonetic systems
is also challenging to resolve [3] when merging different languages.

Graphemes have been used as an alternative modeling unit to
phonemes for speech processing [4–7]. For these systems, an or-
thographic lexicon instead of a pronunciation dictionary is used to
provide a vocabulary list. With recent advances in end-to-end (E2E)
modeling, graphemes have become a popular choice. For example,
[8] built a Connectionist Temporal Classification (CTC) model to di-
rectly output graphemes, while [9–11] used graphemes in sequence-
to-sequence (seq2seq) models. Sub-word units were used in seq2seq
[12–14] and recurrent neural network transducer (RNNT) [15] mod-
els, and word units were used by [16, 17]. Similarly, graphemes are
also commonly used to build end-to-end TTS systems [18–20].

The use of graphemes bring model simplicity and enables
end-to-end optimization, which has been shown to yield better
performance than phoneme-based models [21]. However, unlike

phonemes, the size of the grapheme vocabulary varies greatly across
languages. For example, many eastern languages, such as Chinese,
Japanese and Korean, have tens of thousands of graphemes. With
limited amounts of training data, many graphemes may have little
or no coverage. The label sparsity issue becomes even more severe
for multilingual models, where one needs to pool all the distinct
graphemes from all languages together resulting in a very large
vocabulary that often has tail graphemes with very poor coverage.

To address these problems, [3] explored the use of features from
Unicode character descriptions to construct decision trees for clus-
tering graphemes. However, when the model changes to support
a new language, the decision tree needs to be updated. Recently,
there has been work on exploring the use of Unicode bytes to repre-
sent text. [22] presented an LSTM-based multilingual byte-to-span
model. The model consumes the input text byte-by-byte and outputs
span annotations. [23] investigated the use of bytes for machine read-
ing across morphologically varied languages and found them out-
performing word-level baselines. The Unicode bytes are language
independent and hence a single model can be used for many lan-
guages. The vocabulary size of Unicode bytes is always 256 and it
does not increase when pooling more languages together, which is
more preferable to graphemes for multilingual applications.

In this work, we investigate the potential of representing text us-
ing byte sequences introduced in [22,23] for speech processing. For
ASR, we adopt the Listen, Attend and Spell (LAS) [9] model to con-
vert input speech into sequences of Unicode bytes which correspond
to the UTF-8 encoding of the target texts. This model is referred to
as the Audio-to-Byte (A2B) model. For TTS, our model is based on
the Tacotron 2 architecture [20], and generates speech signals from
an input byte sequence. This model is referred to as the Byte-to-
Audio (B2A) model. Since both the A2B model and the B2A model
operate directly on Unicode bytes, they can handle any number of
languages written in Unicode without any modification to the input
processing. Due to the small vocabulary size, 256 in this case, our
models can be very compact and suitable for on-device applications.

We report recognition results for the A2B model on 4 different
languages – English, Japanese, Spanish and Korean. First, for each
individual language, we compare our A2B models to Audio-to-Char
(A2C) models which emit grapheme outputs. For English and Span-
ish where the graphemes are single-byte characters, A2B has the ex-
act same performance as A2C as expected. However, for languages
that have a large grapheme vocabulary, such as Japanese and Ko-
rean, the label sparsity issue hurts the performance of A2C models,
whereas the A2B model shares bytes across graphemes and performs
better than A2C models. Benefiting from the language independence
representation of Unicode bytes, we find it is possible to progres-
sively add support for new languages when building a multilingual
A2B model. Specifically, we start with an A2B model trained on
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English and Japanese and add in a new language after convergence.
When adding a new language we usually make sure that the new
language has the highest mixing ratio but meanwhile keeping small
portion for each of the existing languages to avoid forgetting older
ones. The learning rate is reset each time a new language is added.
We experiment with adding Spanish and Korean one at a time. In
this way, we can reuse the previously built model and expand the
language coverage without modifying the model structure. For mul-
tilingual ASR, we find that the A2B trained in this way is better than
training from scratch. In addition, by adding a 1-hot language vector
to the A2B system, which has been shown to boost multi-dialect [24]
and multilingual [25, 26] system performance, the multilingual A2B
system outperforms all the language dependent ones.

We evaluate the B2A model on 3 different languages, which
include English, Mandarin and Spanish. Again, we compare B2A
models with those taking graphemes as input. For all three lan-
guages, B2A has similar performance on quantitative subjective
evaluations as graphemes trained on single languages, but it provids
a more compact multilingual TTS model.

2. MULTILINGUAL AUDIO-TO-BYTE (A2B)

2.1. Model Structure
The Audio-to-Byte (A2B) model is based on the Listen, Attend
and Spell (LAS) [9] model, with the output target changed from
graphemes to Unicode bytes. The encoder network consists of 5
unidirectional Long Short-Term Memory (LSTMs) [27] layers, with
each layer having 1, 400 hidden units. The decoder network consists
of 2 unidirectional LSTM layers with 1, 024 hidden units. Additive
content-based attention [28] with 4 attention heads are used to learn
the alignment between the input audio features and the output target
units. The output layer is a 256 dimensional softmax, corresponding
to the 256 possible byte values.

Our front-end consists of 80-dimensional log-mel features, com-
puted with a 25ms window and shifted every 10ms. Similar to [29,
30], at each current frame, these features are stacked with 3 consec-
utive frames to the left and then down-sampled to a 30ms frame rate.
The amount of training data usually varies across languages. For
example, for English we have around 3.5 times the amount of data
compared to the other languages. More details about data can be
found in Section 4. In this work, we adjust the data sampling ratio of
the different languages to help tackle the data imbalance. We choose
the sampling ratio based on intuition and empirical observations.
Specially, we start with mixing the language equally and increase
the ratio for a language where the performance needs more improve-
ment. In addition, a simple 1-hot language ID vector has been found
to be effective improving multilingual systems [24, 25]. We also
adopt this 1-hot language ID vector as additional input passed into
the A2B models, and concatenate it to all the layers including both
the encoder and decoder layers.

2.2. Output Unit
End-to-end speech recognition models have typically used char-
acters [9], sub-words [12], word-pieces [15] or words [16] as the
output unit of choice. Word-based units are difficult to scale for
languages with large vocabularies, which makes the softmax pro-
hibitively large, especially in multilingual models. One solution is
to use data-driven word-piece models. Word-pieces learned from
data can be trained to have a fixed vocabulary size. But it requires
building a new word-piece model when a new language or new data
is added. Additionally, the building of a multilingual word-piece

model is challenging due to the unbalanced grapheme distribution.
Grapheme units give the smallest vocabulary size among these units;
however, some languages such as Japanese still have very large vo-
cabularies. In this work, we explore further decomposing them into
a sequence of Unicode bytes.

Our A2B model generates the text sequence one Unicode byte
at a time. We represent text as a sequence of variable length UTF-8
bytes. For languages with single-byte characters (e.g., English), the
use of byte output is equivalent to the grapheme character output.
However, for languages with multi-byte characters, such as Japanese
and Korean, the A2B model needs to generate a sequence of cor-
rect bytes to emit one grapheme token. This requires the model to
learn both the short-term within-grapheme byte dependencies, and
the long-term inter-grapheme or even inter-word/phrase dependen-
cies, which would be a harder task than grapheme based system.

The main advantage of byte representation is its language inde-
pendence. Any script of any language representable by Unicode can
be represented by a byte sequence, and there is no need to change the
existing model structure. However, for grapheme models, whenever
there is a new symbol added, there is a need to change the output
softmax layer. This language independence makes it more prefer-
able for modeling multiple languages and also code-switching [31]
speech within a single model.

3. MULTILINGUAL BYTE-TO-AUDIO (B2A)

3.1. Model Structure
The Byte-to-Audio (B2A) model is based on Tacotron 2 [20] model.
The input byte sequence embedding is encoded by three convolu-
tional layers, which contain 512 filters with shape 5×1, followed by
a bidirectional long short-term memory (LSTM) layer of 256 units
for each direction. The resulting text encodings are accessed by
the decoder through a location sensitive attention mechanism, which
takes attention history into account when computing a normalized
weight vector for aggregation.

The autoregressive decoder network takes as input the aggre-
gated byte encoding, and conditioned on a fixed speaker embedding
for each speaker, which is essentially the language ID since our train-
ing data has only one speaker per language. Similar to Tacotron 2,
we separately train a WaveRNN [32] to invert mel spectrograms to a
time-domain waveform.

4. RESULTS

4.1. Byte for ASR
4.1.1. Data

Our speech recognition experiments are conducted on a human tran-
scribed supervised training set consisting speech from 4 different
languages, namely English (EN), Japanese (JA), Spanish (ES) and
Korean (KO). The total amount of data is around 76,000 hours and
the language-specific information can be found in Table 2. These
training utterances are anonymized and hand-transcribed, and are
representative of Google’s voice search and dictation traffic. The
transcripts are lowercased and then directly used as training targets.
Special symbols such as punctuations or foreign characters if any
are kept. The speech utterances are further artificially corrupted us-
ing a room simulator [33], adding varying degrees of noise and re-
verberation such that the overall SNR is between 0dB and 30dB,
with an average SNR of 12dB. The noise sources are from YouTube
and daily life noisy environmental recordings. For each utterance,
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Table 1: Speech recognition performance of monolingual and multilingual with Audio-to-Byte (A2B) or Audio-to-Char (A2C) models.

Model ExpId Configuration Training English Japanese Spanish Korean
Languages WER(%) TER(%) WER(%) WER(%)

Mono-
lingual

A1 A2C EN/JA/ES/KO 6.9 13.8 11.2 26.5
A2 A2B 6.9 13.2 11.2 25.8

Multi-
lingual

B1 A2C EN+JA 9.5 13.9 - -
B2 A2B 8.9 13.3 - -
C1 A2B, Random Init EN+JA+ES 9.7 13.6 11.1 -
C2 A2B, Init From B2 8.6 13.2 11.0 -
D1 A2B, Init From C2 EN+JA+ES+KO 8.4 13.4 11.3 26.0
B3 A2B, Larger Model EN+JA 8.8 13.6 - -
B4 A2B, Larger Model, LangVec 7.5 13.3 - -
C3 A2B, Init From B4 EN+JA+ES 7.5 12.9 10.8 -
D2 A2B, Larger Model, LangVec

EN+JA+ES+KO
8.6 13.5 11.2 25.4

D3 A2B, Init From C3 7.0 12.8 10.8 25.0
D4 A2B, Init From D3 6.6 12.6 10.7 24.7

Table 2: Statistics of the training and testing data used in our exper-
iments. “utts” denotes the total number of utterances in each set and
“time” is the total duration of audio for each set.

Languages Train Test
utts (M) time (Kh) utts (K) time (h)

English (EN) 35.0 27.5 15.4 20.0
Japanese (JA) 9.9 16.5 17.6 22.2
Spanish (ES) 8.9 16.3 16.6 22.3
Korean (KO) 9.6 16.1 12.6 15.0

we generated 10 different noisy versions for training. For eval-
uation, we report results on language-specific test sets, each con-
tains roughly 15K anonymized, hand-transcribed utterances from
Google’s voice search traffic without overlapping with the training
data. This amounts to roughly 20 hours of test data per language.
Details of each language dependent test set can be found in Table 2.
We use word error rates (WERs) as the evaluation criterion for all
the languages except for Japanese, where token error rates (TERs)
are used to exclude the ambiguity of word segmentation.

4.1.2. Language Dependent Systems

We first build language dependent A2B models to investigate the per-
formance of byte-based language representations for ASR. For com-
parison, we also build corresponding Audio-to-Char (A2C) models
that have the same model structure but output graphemes. For all
the four languages, the model which outputs byte always has a 256-
dimensional softmax output layer. However, for the grapheme mod-
els, different grapheme vocabularies have to be used for different
languages. The grapheme set is complete for English and Spanish
as it contains all possible letters in each of the languages. How-
ever, for Japanese and Korean, we use the training data vocabularies
which are 4.8K and 2.7K respectively. The corresponding test set
grapheme OOV rates are 2.1% and 1.0%. Whereas with byte out-
puts, we do not have OOV problem for any language.

Experimental results are presented as A1 for the A2C models
and A2 for the A2B models in Table 1. The difference between
grapheme and byte representations mainly lies in languages which
use multi-byte characters, such as Japanese and Korean. Comparing
A1 to A2, byte outputs give better results for Japanese and Korean.
While for languages with single-byte characters, namely English
and Spanish, they have exactly the same performance as expected.
Byte output requires the model to learn both the short-term within-

grapheme byte dependencies and the long-term inter-grapheme or
even inter-word/phrase dependencies; it would possibly be a harder
task than grapheme based systems. However, the A2B model yields
a 4.0% relative WER reduction on Japanese and 2.6% on Korean
over the grapheme systems. It is interesting to see that even with the
same model structure, we are able to get better performance with the
byte representation.

4.1.3. Multilingual ASR Systems

In this experiment, we justify the effectiveness of byte based models
over graphemes for multilingual speech recognition. We first build
a joint English and Japanese model by equally mixing the training
data. For grapheme system, we combine the grapheme vocab of
English and Japanese which leads to a 4.8K dimensional softmax
layer. The same model structure with a 256 dimensional softmax
layer is used to build the A2B model. Although the model now needs
to recognize two languages, we keep the model size the same as
those language dependent ones. From Table 1, the multilingual byte
system (B2) is better than the grapheme system (B1) on both English
and Japanese test sets. However, its performance is worse than those
language dependent ones, which we will address later in this work.
For the following experiments, we only focus on the A2B models.

To increase the model’s language coverage, e.g., Spanish, one
way is to start from a random initialization and train on all the train-
ing data. We equally mix the data from these three languages for
training. The results are presented as C1 in Table 1. Due to the lan-
guage independence of the byte representation, we, alternatively, can
add a new language by simply training on new data. Hence, we reuse
the B2 model to continue training with Spanish data. To avoid the
model forgetting previous languages, namely English and Japanese,
we also mix in those languages but with a slightly lower mixing ra-
tio which is 3:3:4 for English, Japanese and Spanish. The results
are presented as C2 in Table 1. With this method, the byte model
not only trains faster but also achieves better performance than C1.
Most importantly, C2 matches the performance of language depen-
dent models on Japanese and is even slightly better for Spanish.

To add support for Korean, we simply continued the train-
ing of C2 with the new training data mixture. We use a ratio of
0.23:0.23:0.23:0.31, which is based on heuristics to balance the
existing languages and use a higher ratio for the new languages. We
did not specifically tune the mixing ratio. The results (D1 in Table 1)
show that we are able to get closer to the language dependent models
except for English. Even though worse than the English only model,
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Table 3: Results on A2B and A2C models on English-Japanese
code-switching data.

Model ExpId Configuration TER(%)

Mono-
lingual

A1 A2C 36.5
A2 A2B 22.4

Multi-
lingual

B1 A2C 21.4
B2 A2B 20.5
D4 A2B Larger Model, LangVec 21.3

D1 gives the best multilingual performance on English so far.
To improve the performance of the multilingual systems, we first

increase the number of decoder layers from 2 to 6 in consideration
of the increased variations in byte sequences when mixing more lan-
guages. However, experimental results show that the larger model
improves performance on English but degrades on Japanese due to
potential over-fitting (comparing B3 to B2). To address this prob-
lem, we bring in the 1-hot language ID vector to all the layers in
the A2B model. This enables the learning of language independent
weight matrices together with language dependent biases to cater
the specific needs for each language. Although a vector of size 2 is
sufficient for the current model, an 8D vector is used for extension
to more languages. Experiment B4 shows dramatic error reduction
with this simple 1-hot vector comparing to B3.

Similarly, to support the recognition of Spanish, we continue the
training of B4 by mixing the languages at the ratio of 3:3:4 where
more weight is given to the new language. This gives us the model
C3 which outperforms language dependent ones on both Japanese
and Spanish. Furthermore, we add Korean in a similar way with the
ratio of 0.3:0.15:0.15:0.4. This time while making sure the ratio for
the new language, Korean, is the highest, we also increase the ratio
for English as we have more English training data. The model D3
wins over language dependent models except for English. One as-
sumption for the degradation on English is that when mixing in other
languages, the multilingual model sees less data from each language
than those single language models. To justify this, we continue the
training of D3 with an increased English data presence ratio in the
mixture, specifically we use the ratio of 2:1:1:1. The final model D4
wins over all the language dependent ones on average by 4.4% rela-
tively. We include the results for a randomly initialized model with
equal training data mixing ratio D2 for comparison.

4.1.4. Error analysis
To further understand the gains of using bytes versus graphemes as
language representations, we take Japanese for this study and com-
pare the decoding hypotheses between A1 and A2. Interestingly, the
A2B model wins over the A2C models mainly on English words in
utterances with mixed English and Japanese. The Japanese test set
was not particularly created to include code-switching utterances.
Examining the English words appeared in Japanese test set, they are
mostly proper nouns such as “Google”, “wi-fi”, “LAN” etc. One
example of such cases is the A2B generates the correct hypothesis
“wi-fiオン” while the A2C outputs “i-iオン”. Another example is
“google音声認識” where the A2B recognizes it correctly, but the
A2C model drops the initial “g” and gives “oogle音声認識”.

One of the potential benefits of using byte-based models is for
code-switching speech. Collecting such data is challenging. The
quality of artificially concatenated speech is far from real. In this
study we use data filtered from the Japanese test set, where utter-
ances having transcript that contains 5 or more consecutive English
characters are kept. These utterances mostly contain only a single
English word in Japanese texts. Out of the 17.6K utterances, we get

Table 4: Speech naturalness Mean Opinion Score (MOS) with 95%
confidence intervals across different language and systems.

Languages EN CN ES

Monolingual C2A 4.24±0.12 3.48±0.11 4.21±0.11
Multilingual B2A 4.23±0.14 3.42±0.12 4.23±0.10

476 code-switching sentences and we report the TERs on this subset
in Table 3. With Japanese monolingual models (A1 and A2), our
A2B model outperforms the A2C model by 38.6% relatively. With
English and Japanese multilingual models (B1 and B2), our A2B
model wins over the A2C model by 4.2% relatively. We also test
system D4 on these code-switch data. However, due to the language
1-hot vector used in D4 is utterance-level, the performance is worse
than B2. Using frame/segment level language information may ad-
dress this problem, which will be explored in future.

4.2. Byte for TTS
4.2.1. Data
Text-to-speech models were trained on (1) 44 hours of North Amer-
ican English speech recorded by a female speaker; (2) 37 hours of
Mandarin speech by a female speaker; (3) 44 hours of North Amer-
ican Spanish speech by a female speaker. For all compared mod-
els, we synthesize raw audio at 24 kHz in 16-bit format. We rely
on crowdsourced Mean Opinion Score (MOS) evaluations based on
subjective listening tests. All our MOS evaluations are aligned to the
Absolute Category Rating scale [34], with rating scores from 1 to 5
in 0.5 point increments.

4.2.2. Multilingual TTS System
Table 4 compares subjective naturalness MOS of the proposed model
to the baseline using graphemes for English, Mandarin and Span-
ish respectively. Both results indicate that the proposed multilin-
gual B2A model is comparable as the state-of-the-art monolingual
model1. Moreover, we observed that the B2A model was able to
read code-switching text. However, we don’t have good metric to
evaluate the quality of code-switching for TTS, e.g. the speech is
fluent but the speaker is changed for different language. Future work
may explore how to evaluate TTS on code-switching scenario and
how to disentangle language and speaker given more training data.

5. CONCLUSIONS

In this paper, we investigated the use of Unicode bytes as a new lan-
guage representation for both ASR and TTS. We proposed Audio-
to-Byte (A2B) and Byte-to-Audio (B2A) as multilingual ASR and
TTS end-to-end models. The use of bytes allows us to build a single
model for many languages without modifying the model structure
for new ones. This brings representation sharing across graphemes,
and is crucial for languages with large grapheme vocabularies, es-
pecially in multilingual processing. Our experiments show that
byte models outperform grapheme models in both multilingual and
monolingual models. Moreover, our multilingual A2B model out-
performs our monolingual baselines by 4.4% relatively on average.
The language independence of byte models provides a new perspec-
tive to the code-switching problem, where our multilingual A2B
model achieves 38.6% relative improvement over our monolingual
baselines. Finally, we also show our multilingual B2A models match
the performance of our monolingual baselines in TTS.

1MOS is worse than [20] because we have OOV in the test set.
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