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ABSTRACT

This paper presents the provable gradient descent algorithm
with random initialization for learning a two-layer neural net-
work with quadratic activation functions. Specifically, we fo-
cus on the under-parameterized regime where the number of
hidden units is smaller than the dimension of the inputs. We
reveal that the randomly initialized gradient descent for the
nonconvex neural network training problem is able to enter a
local region that enjoys strong convexity and strong smooth-
ness within a few iterations, and then provably converges to a
globally optimal model at a linear rate.

Index Terms— Polynomial neural network, gradient de-
scent, nonconvex optimization, local landscape, random ini-
tialization.

1. INTRODUCTION

Deep learning has recently emerged as a powerful tool in
large scale machine learning systems. Various neural net-
works lead to great influence on diversified applications, such
as computer vision, natural language processing and rein-
forcement learning [1]. However, despite the empirically
successful performance of neural networks in practices, it
is critical to understand the provable methods for learning
neural networks. To achieve this goal, the main challenge is
how to deal with high-dimensional and nonconvex statistical
optimization problems arising from training neural networks.
There is a growing body of recent works to tame the non-
convexity in solving the nonconvex optimization problems in
deep neural networks. Although the nuclear norm relaxation
is able to provide performance guarantees for convolutional
neural networks in [2], the convex approaches are computa-
tionally expensive to deal with large-scale data set.

The global landscape analysis for the loss functions be-
comes a powerful tool to tame nonconvexity. Specifically,
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with enough training data, some nonconvex loss functions en-
joy benign geometric structures that all the local minima are
as good as global minima, and all the saddle points can be es-
caped. In particular, the loss functions of the deep linear neu-
ral networks [3] and the over-parameterized shallow neural
networks [4] have the favorable characteristics that all local
mins are global, and all saddles are strict. Based on the global
landscape analysis, generic saddle-point escaping algorithms
have been further developed, e.g., trust region method [5] and
perturbed gradient descent [6]. However, these algorithms
have either high iteration cost or iteration complexity, yield-
ing conservative computational guarantees for specific prob-
lems [7]. Furthermore, these algorithms are more intricate
than the vanilla gradient descent method.

Recently, the local landscape analysis turns out to be ef-
fective to enjoy fast convergence rate with cheap iteration
cost via exploiting the local strong convexity and smooth-
ness of the nonconvex loss functions [4, 8, 9, 10]. However,
all these provable algorithms still call for carefully-designed
initialization [4, 8, 9]. To find a natural implementation for
the practitioners, in this paper, we shall propose to learn the
shallow neural networks via randomly initialized gradient de-
scent with provable optimality guarantees. Specifically, given
enough training data, we show that the randomly initialized
gradient descent iterates are able to enter a local region that
enjoys strong convexity and strong smoothness within a few
iterations. In the second stage, the gradient descent provably
converges to a globally optimal model at a linear rate.

2. PROBLEM FORMULATION

In this paper, we consider a shallow neural network that con-
sists of only one hidden layer with r neurons and activation
function σ(z) = z2 [4, 11, 12], n input nodes and one output
node, as illustrated in Fig. 1. More precisely, the overall re-
lationship among these layers is formulated by the following
equation:

y =

r∑
i=1

αiσ(〈wi, x〉) =
r∑
j=1

αj 〈wj , x〉2, (1)
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Fig. 1: Two-layer neural network with activation σ(·)

where the scalar y ∈ R and the vector x ∈ Rn×1 represent the
output and the input, respectively. wi contains the weights of
the edges connecting the input to the ith hidden node and αi
is the weight of the edge connecting the ith hidden node to the
output. We focus on the “under-parameterized” regime where
the number of hidden nodes is much less than the dimension
of the inputs (r � n) [13].

Furthermore, we propose to jointly optimize αj and wj
by defining W =

∑r
j=1 αjwjw

>
j [13]. By factorizing W as

W = MM>, model (1) can be rewritten as follows:

y =

r∑
j=1

αjx>wjw>j x = x>MM>x = ‖x>M‖22, (2)

where M ∈ Rn×r (r � n) denotes the low-rank factor. The
goal is to recover W, or equivalently, the low-rank factor M,
from limited number of observations. This problem spans a
variety of important practical applications from machine lean-
rning (this paper) to communication [14].

Taking {xi, yi}mi=1 as training data, we need to solve the
following nonconvex optimization problem to learn a neural
network:

min
M∈Rn×r

L(M) =
1

4m

m∑
i=1

(yi − ‖x>i M‖22)2. (3)

Obviously, the problem is highly nonconvex due to the natural
least-squares empirical risk formulation in the optimization
variable M.

Our goal is to demonstrate that gradient descent (GD)
with random initialization can solve the highly nonconvex
problem (3) with global optimality guarantees.

3. MAIN RESULT

3.1. Preliminaries

We denote by ‖m‖2 the l2-norm of a vector m, and M> and
‖M‖F the transpose and the Frobenius norm of a matrix M,
respectively. The kth largest singular value of a matrix M is
denoted by σk(M). The notation f(n) . g(n) or f(n) =
O(g(n)) (resp. f(n) & g(n)) means that there exists a univer-
sal constant c > 0 such that |f(n)| ≤ c|g(n)| (resp. |f(n)| ≥
c|g(n)|).

In our analysis, we specify the metric used to assess the
estimation error of the running iterates.

Definition 1. Since (M\P)(M\P)> = M\M\> for any or-
thonormal matrix P ∈ Rr×r, M\ is recoverable up to or-
thonormal transforms.

dist(Mt,M\) = ‖MtQt −M\‖F , (4)

where Qt is given by

Qt := argminP∈Or×r‖MtP−M\‖F . (5)

3.2. Algorithm and theoretical results

The algorithm studied herein is a combination of vanilla gra-
dient descent and random initialization

Mt+1 = Mt − µt∇L(Mt), (6)

where Mt denotes the estimate in the tth iteration, µt is the
step size/learning rate, and the gradient∇L(M) is given by

∇L(M) =
1

m

m∑
i=1

(‖x>i M‖22 − yi)xix>i M. (7)

Moreover, we apply the random initialization, which means
the columns of M0 composed of standard Gaussian entries,
i.e. m0

i
i.i.d∼ N (0, n−1In), for i = 1, · · · , r.

Our main findings are summarized in the following theo-
rem.

Theorem 1. Given a data set of training pairs {xi, yi}mi=1

with the inputs xi ∈ Rn i.i.d∼ N (0, In) and the labels yi ∈
R generated from a planted two layer neural network model
with r hidden neurons

yi = ‖x>i M\‖22,

where M\ ∈ Rn×r are the weights of the input-hidden layer.
Suppose the sample complexity m and the step size µt obeys

m & nr4κ3 log13m and µt := µ =
c

r2κ2σ2
r(M

\)
,
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where κ =
σ2
1(M\)
σ2
r(M\) for some sufficiently small constant c.

Then with high probability approaching one, there exits a suf-
ficiently small constant 0 < δ < 1 and Tδ = O(r2 log n)
such that the trajectory of gradient descent with random ini-
tialization can be divided into two stages:

• Stage 1. The iterates are capable of entering a local re-
gion with strong convexity and smoothness surrounding
M\ within Tδ = O(r2 log n) iterations,

dist(MTδ ,M
\) ≤ δ σ

2
r(M

\)

‖M\‖F
.

• Stage 2. The iterates converge linearly to M\ with a
contraction rate 1− 0.5µσ2

r(M
\)

dist(Mt,M\) ≤ (1− 0.5µσ2
r(M

\))t−Tδ · δ σ
2
r(M

\)

‖M\‖F
, t > Tδ.

Here, the step size is taken to be a fixed constant through-
out all iterations, and we reuse all data across all iterations
(i.e. resampling is not required to establish this theorem).
Even though Stage 1 may not enjoy linear convergence
in terms of the relative error, it is of fairly short duration
O(r2 log n). After entering the local region, GD converges
linearly to the globally optimal model M\. This implies that
GD will take O(r2 log(1/ε)) iterations to reach ε-accuracy.
Taken collectively, the theorem shows that the iterations
complexity of gradient descent with random initialization is
O
(
r2 log n+ r2 log 1

ε

)
. Moreover, our findings only require

that the sample size satisfies m & nr4κ3poly log(m) which
is optimal up to some logarithmic factor.

Compared with other existing nonconvex approaches,
we are able to guarantee near-optimal sampling complexity
and computational complexity simultaneously. Specifically,
[11] adopted a greedy learning strategy, and can only guar-
antee sublinear convergence rate. Iterative algorithms based
on SVD methods proposed by [13] requires a fresh set of
samples at every iteration, which is never executed in prac-
tice, and the sample complexity grows unbounded for exact
recovery. Moreover, [8] provided the similar conclusions
using gradient descent but with spectral initialization. In con-
trast, our initialization scheme is natural implementation for
practitioners with random initialization.

Other works have also studied similar two-layer neural
network with quadratic activations [4, 12]. However, they
studied the optimization for an over-parameterized shallow
neural network with quadratic activation, where r is larger
than n.

4. ANALYSIS

In this section, we will provide intuitions regarding why our
theorem is expected to work. We provide the outline of the

proof here.We will present more details of the proof in the
extended version.

Definition 2. To capture the signal-to-noise ratio of the
running iterates, we define the signal component Mt,‖ =
[mt
i,‖]

r
i=1 and perpendicular components Mt,⊥ = [mt

i,⊥]
r
i=1.

For simplicity, we denote m\
i (resp. mt

i) as the ith column of
the M\ (resp. Mt).

mt
i,‖ =

e>i Mt>M\ei
‖m\

i‖2
m\, (8)

mt
i,⊥ = mt

i −
e>i Mt>M\ei
‖m\

i‖2
m\
i , (9)

where ei is the ith standard base.

Definition 3. In what follows, we focus our attention on the
following two quantities that reflect the sizes of the preceding
two components

αt :=

√√√√1

r

r∑
i=1

‖mt
i,‖‖2, βt :=

√√√√1

r

r∑
i=1

‖mt
i,⊥‖22. (10)

4.1. Population dynamics

We first investigate the dynamics of the population gradient
sequence (the case where we have infinite samples). Hence,
the iterates {Mt} are constructed using the population gradi-
ent

Mt+1 = Mt − µt∇F(Mt).

Here,∇F(M) represents the population gradient given by

∇F(M) = [(‖Mt‖2F−‖M\‖2F )In+2(MtM>t−M\M\>)]Mt,

which can be computed by∇F(M) := E [∇L(M)] assuming
that M and xi’s are independent. Without loss of generality,
we assume M\ = [e1, · · · , e1]. Then we obtain the dynamics
for both signal and perpendicular components

Mt+1,‖ = Mt,‖{
[
1 + µ(3r − ‖Mt‖2F )

]
Ir − 2µM>t Mt},

(11a)
Mt+1,⊥ = Mt,⊥{

[
1 + µ(r − ‖Mt‖2F )

]
Ir − 2µM>t Mt}.

(11b)
For simplicity, we denote by

A =
[
1 + µ(3r − ‖Mt‖2F )

]
Ir − 2µM>t Mt, (12a)

B =
[
1 + µ(r − ‖Mt‖2F )

]
Ir − 2µM>t Mt. (12b)

Assuming Mt is non-negative definite, we arrive at the fol-
lowing population-level state evolution for both αt and βt:

√
rσr(A)αt ≤ αt+1 ≤

√
rσ1(A)αt, (13a)

√
rσr(B)βt ≤ βt+1 ≤

√
rσ1(B)βt. (13b)
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Fig. 2: Numerical results, plotted semilogarithmically

4.2. Finite-sample analysis

In the finite-sample regime, we rewrite the gradient update
rule as

Mt+1 = Mt − µ∇L(Mt)

= Mt − µ∇F(Mt)− µr(Mt), (14)

where r(Mt) = ∇L(Mt) − ∇F(Mt). By assuming the in-
dependence between Mt and {xi}, the central limit theorem
(CLT) allows us to control the size of the fluctuation term
r(Mt) as long as the sample size m & nr4poly log(m). Then
we arrive at an approximation state evolution for the finite-
sample case:

√
rσr(A)αt . αt+1 .

√
rσ1(A)αt, (15a)

√
rσr(B)βt . βt+1 .

√
rσ1(B)βt. (15b)

4.3. Outline of the proof

When |αt − 1| ≤ δ/2r and |βt| ≤ δ/2r, then it is easy to
check that

dist(Mt,M\) ≤
√
r|αt − 1|+

√
r|βt| ≤ δ/

√
r.

1. Show that if αt and βt satisfy the approximate state
evolution (15), then there exists some Tδ = O(r2 log(n))
such that

|αTδ − 1| ≤ δ/2r and |βTδ | ≤ δ/2r, (16)

which immediately implies that

dist(Mt,M\) ≤ δ/
√
r.

2. Justify that αt and βt satisfy the approximate state evo-
lution with high probability, using leave-one-out argu-
ments [7].

After t ≥ Tδ , we can invoke prior theory [8] concerning
local convergence to show that with high probability,

dist(Mt,M\) ≤ (1− ρ)t−Tδ‖Mt −M\‖F , ∀t ≥ Tδ,

for some constant 0 < ρ < 1.

5. NUMERICAL RESULTS

We now provide numerical results that shed some more light
to the conclusions drawn from Theorem 1.

Let us place ourselves under the setting of Theorem 1. We
vary the number n of dimensions (i.e. n = 20, 30, 50, 80), set
m = 1000n, fix r = 10 and take a constant step size µ :=
0.005. Here the design vectors are generated from Gaussian
distributions, i.e., xi

i.i.d∼ N (0, In) for 1 ≤ i ≤ m. Without
loss of generality, we normalize the columns of M\ with the
length of 1. We use metric (4) to evaluate the performance.
Fig. 2(a) displays the convergence results of gradient descent
with random initialization and a constant step size: Stage 1,
the relative error of Mt stays nearly flat; Stage 2, the relative
error of Mt experiences geometric decay. Importantly, the
first stage lasts only a few hundred of iterations.

In Fig. 2(b), the size of the signal component increases ex-
ponentially fast and becomes the dominant component within
several hundreds of iterations. Furthermore, we find the ratio
αt/βt grows exponentially fast throughout the execution of
the algorithm, as illustrated in Fig .2(c). The ratio αt/βt in
some sense captures the signal-to-noise ratio of the running
iterates.

6. CONCLUSION

We demystified the computational efficiency of gradient de-
scent with random initialization for learning a shallow neural
network with quadratic activations. Specifically, we demon-
strated that gradient descent with random initialization takes
only O

(
r2 log n+ r2 log 1

ε

)
iterations to converge a globally

optimal model given nearly minimal samples.
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