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ABSTRACT

The huge number of parameters of deep neural network makes it dif-
ficult to deploy on embedded devices with limited hardware, compu-
tation, storage and energy resources. In this paper, we shall propose
a log-sum minimization approach to prune a trained network layer
by layer thereby improving the network compression ratio. Specifi-
cally, this is achieved by enhancing sparsity for network parameters
such that the output of the network after pruning is consistent with
the original one. We further present an iteratively reweighted algo-
rithm to solve the nonconvex and nonsmooth log-sum minimization
problem with general convex constraints. Furthermore, we show the
existence of the cluster points for the iterates and the global con-
vergence of the proposed iteratively reweighted algorithm. Numer-
ical experiments demonstrate that the proposed approach is able to
significantly prune the trained neural network while preserving the
prediction accuracy.

Index Terms— Deep learning, network pruning, compressive
sensing, sparse optimization.

1. INTRODUCTION

Deep neural network (DNN) has shown enormous success in a wide
range of applications, from speech processing [1] and image clas-
sification [2] to reinforcement learning [3], which become the fun-
damental services for embedded devices (e.g., IoT devices) [4, 5].
Therefore, the adoption of DNN to the embedded devices becomes
a trend especially for the real-time and accurate prediction services
[4, 5]. However, the number of parameters of a DNN is typically
extremely large (e.g., more than 130M parameters in VGG-16 net
[6]) in order to achieve high prediction accuracy. This makes it
impractical for most models be directly deployed on embedded de-
vices, which are usually constrained on hardware resources and en-
ergy budget. So far a prominent approach is transmitting data to
the cloud where large DNN models are deployed, and then return-
ing the prediction results to embedded devices [7]. However, such
a solution suffers significant side effects including privacy dangers
and dynamic network quality (e.g., bandwidth, latency). As a result,
building small yet efficient DNN models becomes critical for direct
deployment of DNN models on resource constrained embedded de-
vices.

To produce compact DNN models that can be directly deployed
on embedded devices, many approaches have been proposed such as
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low-rank approximation of network parameters [8], network param-
eter quantization [9] and network pruning [10, 11, 12]. In particular,
network pruning has received notable attention among these meth-
ods due to its competitive performance and compatibility. Given
a large trained DNN model, the main idea behind network prun-
ing is to trim the connections between neurons according to a cer-
tain criterion, thereby reducing the number of nonzero parameters.
However, most of the existing pruning criteria are designed heuris-
tically, which give no performance guarantees for a pruned DNN.
Instead of considering a whole network, [13] propose to prune the
network layer-by-layer via minimizing reconstruction error of each
layer. This layer-wise pruning method offers the possibility to pro-
vide performance guarantees, i.e., the overall performance drops af-
ter pruning can be bounded by the sum of reconstruction error for
each layer.

In order to further prune (or sparsify) a DNN, in this paper, we
propose to adopt log-sum function to enhance sparsity in network
parameters instead of using `1-norm as adopted in [13]. This is moti-
vated by the fact that the log-sum function is a tighter approximation
to `0-norm compared with `1-norm. However, the resulting opti-
mization problem is computationally intractable due to the noncon-
vex and nonsmooth nature of the log-sum function. To address this
issue, an iteratively reweighted algorithm [14] is proposed to solve
it, which is achieved by solving a sequence of convex subproblems.
However, the convergence analysis of an iteratively reweighted al-
gorithm for the original nonconvex and nonsmooth problem is dif-
ficult to track [15, 16]. The global convergence of the iteratively
reweighted algorithm for unconstrained `p regularization problem is
derived in [17]. For the `2-`p minimization problems [15] with linear
constrains, the global convergence of the iteratively reweighted algo-
rithm is established in [18]. A recent study [19] has shown the global
convergence results for a class of unconstrained nonconvex regular-
ization problems in computer vision based on limiting-subgradient.
However, their results are inapplicable in our problem due to the
complicated convex constraints for network pruning. To address this
issue, in this paper, we prove the global convergence of the presented
iteratively reweighted algorithm based on the Fréchet subdifferential
[20]. This is achieved by proving that the sequence generated by the
iteratively reweighted algorithm must have cluster points, and ev-
ery cluster point satisfies the first-order optimality condition of the
constrained log-sum minimization problem. Numerical experiments
demonstrate that the proposed approach achieves high compression
ratio while preserving comparable prediction accuracy.
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2. PROBLEM STATEMENT

Consider a feedforward fully-connected neural network with L lay-
ers. n training samples xi ∈ Rd are available. We denote by
X = [x1, · · · ,xn] ∈ Rd×n as the input training data matrix. The
final output of the network is denoted by XL ∈ RdL×n. We focus
on Rectified Linear Units (ReLU) as the activation function. There-
fore, the input-output relationship of the `-th layer is given by

X` = max(W T
` X`−1, 0), ` = 1, · · · , L, (1)

where X0 = X , d0 = d and W` ∈ Rd`−1×d` is the parameter
matrix applied to the output of previous layer X`−1; the activation
function max(·, 0) is applied in an element-wise manner. In model
(1), the bias is assumed to be embedded in the parameter matrix W`

for notational simplicity.
Network compression including low-rank approximation of net-

work [8], network parameter quantization [9] and network pruning
[10, 11, 12] is one of the promising approaches to adopt deep neural
network for embedded devices (e.g., IoT devices) with limited hard-
ware resources and tight energy budgets [4, 5]. The network pruning
method received notable attention due to their competitive perfor-
mance and compatibility. Furthermore, the work in [13] proposed
a layer-wise network pruning method, namely, Net-trim, which re-
moves connections at each layer by sparse optimization method,
which also pervades numerous applications in wireless communica-
tion [21] . They show that discrepancy between the pruned network
and the original one can be bounded by the sum of the reconstruction
error of each layer. In this paper, we choose the compression ratio
(CR) and prediction accuracy as our performance metric, where CR
is defined as one minus the ratio of the number of parameters of the
pruned network to that of the original one.

To further improve the CR, we propose a nonconvex and nons-
mooth optimization approach, followed by an iteratively reweighted
algorithm with global convergence guarantees to prune a trained neu-
ral network layer by layer while maintaining the prediction accuracy.

2.1. Layer-wise Pruning of Network

We consider the `-th layer of a neural network. A natural approach
to prune the network is using `1-norm minimization to promote spar-
sity while preserving the network’s output approximately. This ap-
proach takes the form

minimize
W∈Rd`−1×d`

‖W ‖1

subject to ‖max(W TX`−1, 0)−X`‖F ≤ ε,
(2)

where ‖W ‖1 =
∑
i,j |wi,j | with wi,j as the i-th row and the j-

th column entry of matrix W and parameter ε > 0 controls the
reconstruction error of this layer.

Furthermore, the nonconvex constraint in (2) can be approxi-
mated by a convex set based on the fact that the entries of X` are
either zero or strictly positive [13]. It turns out that we can obtain a
pruned network via solving the following convex proxy to (2):

minimize
W∈Rd`−1×d`

‖W ‖1

subject to ‖(W TX`−1 −X`)Ω‖F ≤ ε,

(W TX`−1)Ωc ≤ 0,

(3)

where Ω = suppX` = {(i, j) : [X`]i,j > 0}.

2.2. Proposed Nonconvex Pruning Approach

To further enhance sparsity for the network parameters, instead of
applying the convex `1-minimization approach, we propose to use
log-sum sparsity inducing function

fp(W ) =
∑
i,j

log(p|wij |+ 1), with p > 0, (4)

to seek a sparser solution in problem (3). This is motivated by the
fact that function fp(W ) tends to ‖W ‖0 as p → ∞, where ‖W ‖0
is the `0-norm that counts the number of non-zero entries of W . In-
tuitively, the log-sum function has p slop at the origin as p → ∞
while the `1-norm only has unit slop. Therefore, fp(X) places rel-
atively larger penalty on small nonzero network parameters, thereby
encouraging them to be set to zero more strongly. LetW denote the
convex feasible set in problem (3). Adopting the log-sum function
results in the following optimization problem:

minimize
W∈Rd`−1×d`

fp(W ), subject to W ∈ W. (5)

However, the nonconvex and nonsmooth nature of log-sum function
makes (5) computationally intractable. In the following section, we
present an iteratively reweighted algorithm with global convergence
guarantees for solving problem (5).

3. ITERATIVELY REWEIGHTED ALGORITHM

In this section, we shall present an iteratively reweighted algorithm
to solve the constrained nonconvex and nonsmooth log-sum mini-
mization problem (5), which can be written as

minimize
W∈Rd`−1×d`

J(W ) := fp(W ) + δW(W ). (6)

Here, δW(W ) is the characteristic function defined as

δW(W ) =

{
0 if W ∈ W,

+∞ otherwise.

Notice that the log-sum function can be written as a composite func-
tion of hp and the absolute value function

fp(W ) =
∑
i,j

hp(zij),

with zij = |wij | and hp(z) := log(pz + 1). The major difficulty
of minimizing fp comes from the nonconvex and nonsmooth nature
of function hp with respect to wij . To circumvent this, at a given
point Ŵ , we approximate fp by replacing hp using its linearization
at |ŵij |, i.e.,

hp(zij) ≈ h′p(ẑij)(zij − ẑij) with ẑij = |ŵij |.

Therefore, we can obtain the next iterate W̃ via solving the fol-
lowing convex optimization problem, which is a convex and smooth
local approximation model at each iterate Ŵ :

minimize
W∈Rd`−1×d`

GŴ (W ) :=
∑
i,j

âij |wij |+ δW(W ), (7)

where the weights are given by âij = h′p(ẑij) = p
pẑij+1

=
p

p|ŵij |+1
. The smaller parameter ŵij is, the larger weight âij will
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be, which shall place relatively larger penalty on the small but
nonzero network parameters ŵij and enforce them to be zero more
aggressively.

The presented iteratively reweighted algorithm updates the
weight matrix Ak := [akij ] ∈ Rd`−1×d` to obtain the new iterate
W k+1. As suggested in [14], we solve the unweighted problem (3)
to obtain the initial points W 0.

Algorithm 1: Iteratively Reweighted Algorithm for Solv-
ing the Network Pruning Problem (5)

Input : Initial points W 0

1 for k = 1, 2, · · · do
2 Compute new iterate:

W k ∈ arg min
W∈Rd`−1×d`

GWk−1(W ).

3 Updates weigths: akij = p

p|wkij |+1
, ∀i, j ∈ [d1]× [d2] .

4 end

However, the convergence analysis of the iteratively reweighted
algorithm for the nonconvex optimization problem is difficult to es-
tablish. The work in [17] showed the global convergence of the it-
eratively reweighted algorithm for the `p regularization problem but
no constraints are involved, and [18] showed the global convergence
for the `2-`p minimization problem with linear constrains. A re-
cent study [19] showed the global convergence results for a class of
unconstrained nonconvex regularization problems in computer vi-
sion based on limiting-subgradient. However, their results are nor-
mally inapplicable for our log-sum minimization problem with com-
plicated constraints.

Before proceeding to the global convergence analysis, we sum-
marize the benefits of choosing log-sum function among various
types of sparsity inducing functions, which are mainly based on the
boundedness of h′p and the coercivity of hp.

• Note that aij = h′p(zij) is bounded above by p as zij →
0, which can prevent the subproblems G(·) from becoming
overwhelmingly ill-conditioned and intractable.

• Since h′p(0+) is bounded above, it is easy to characterize the
generalized subdifferentials of hp ◦ | · | at 0, where hp ◦ | · |
denotes the function hp composited with | · |. As a result, it
is straightforward to characterize the optimality condition of
(6). This also makes the convergence analysis simple.

• The coercivity of J(·) guarantees the level set of J(·) is al-
ways bounded. As shown in the analysis, J(·) is steadily
decreasing from any feasible starting point over the iterates,
so that the iterates always possess cluster points—a simplifi-
cation for the analysis as well as the selection of the initial
points.

4. GLOBAL CONVERGENCE

In this section, we show the global convergence of our proposed al-
gorithms. Specifically, we shall provide the first-order optimality
condition for the problem (5) and show that the sequence generated
by our proposed algorithm must have cluster points, and every clus-
ter point of the iterates satisfies the first-order optimal condition for
problem (6).

Definition 1 (Fréchet subdifferential [20]). Let X be a real Banach
space and X ∗ denotes the corresponding topological duals and f
be a function from X into an extended real line R̄ = R ∪ {+∞}
and finite at x. The Fréchet subdifferential of f at x, denoted as
∂F f(x), is a set defined by

∂F f(x) =

{
z ∈ X ∗ : lim inf

u→x

f(u)− f(x)− 〈z,u− x〉
‖u− x‖ ≥ 0

}
.

Its elements are referred to as Fréchet subgradients.

First of all, we derive conditions to characterize the first-order
necessary optimality condition of (6) in the following theorem.

Theorem 1 (Fermat’s rule [22]). Let W ∈ W be a local minimum
of (6). Then the following condition is satisfied:

0 ∈ ∂FJ(W ) = ∂F fp(W ) +N(W |W), (8)

where N(W |W) is the normal cone [23] toW at a point W .

We now investigate ∂F fp(W ) in Lemma 1, which can simplify
our subsequent analysis. We omit the detailed proofs of Lemma 1,
2, 3, 4 due to space limitation.

Lemma 1. It holds true that [γijζij ] ∈ ∂F fp(W ) for γij =
h′p(zij), where ζij ∈ ∂zij(wij). In particular, ∂Fhp ◦ zij(0) =
[−p, p].

The following Lemma 2 shows the existence of the solution to
(7) and characterizes the first-order optimality of (6).

Lemma 2. The optimal solution of subproblem (7) is always
nonempty for any Ŵ ∈ W . Furthermore, Ŵ also satisfies the
first-order optimality condition of (6) if and only if

Ŵ ∈ arg min
W

GŴ (W ).

The next Lemma 3 indicates that the optimal solution of the sub-
problem causes a decrease in J(W ).

Lemma 3. Let Ŵ ∈ W and âij = aij(ŵij) for i, j ∈ [d1]× [d2].
Suppose that W̃ ∈ arg minW GŴ (W ). It holds true that

J(W̃ )− J(Ŵ ) ≤ GŴ (W̃ )−GŴ (Ŵ ) ≤ 0.

At the k-th iterate, define the model reduction caused by the new
iterate W k+1

∆GWk (W k+1) = GWk (W k)−GWk (W k+1).

Notice that ∆GWk (W k+1) ≥ 0. We show this model reduction
diminishes in the following Lemma 4.

Lemma 4. Suppose {W k} is generated by Algorithm 1 with W 1 ∈
W . It holds true that {J(W k)} is monotonically decreasing and
lim
k→∞

∆GWk (W k+1) = 0.

We now provide our main result on the global convergence in
the following theorem.

Theorem 2. Suppose sequence {W k}∞k=1 is generated by Algo-
rithm 1 with initial point W 0 ∈ W . It holds true that {W k} must
have cluster points and every cluster point of {W k} satisfies the
first-order optimality condition for (5).
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Proof. Assume by contradiction that {W k} is unbounded. There

must exist a subsequence {W k}k∈S , S ⊂ N such that ‖W k‖ k∈S−→
+∞. It follows that J(W k)

k∈S−→ +∞ due to the coercivity of
J , contradicting Lemma 4. Hence {W k} must be bounded. By
Bolzano-Weierstrass theorem, we show that the existence of the clus-
ter points.

Now suppose W ∗ is a cluster point of {W k}. According to
Lemma 2, it suffices to show that W ∗ ∈ arg minW GW ∗(W ). We
assume by contradiction that W ∗ is not optimal and there exists W̄
such that ε := GW ∗(W ∗) − GW ∗(W̄ ) > 0. Consider a subse-
quence S ⊂ N with {W k}S → W ∗. By Lemma 4, there exists
k1 > 0, such that for all k > k1

GWk (W k)−GWk (W k+1) ≤ ε

4
. (9)

To derive a contradiction, notice that wkij
S→ w∗ij and akij

S→ a∗ij .
There exists k2 such that for all k > k2,

∑
ij(a

∗
ij − akij)|w̄ij | >

− ε
12
, and

∑
ij(a

k
ij |wkij | − a∗ij |w∗ij |) > − ε

12
. Therefore, for all k >

k2

GW ∗(W ∗)−GWk (W̄ )

=
∑
ij

a∗ij |w∗ij | −
∑
ij

(a∗ij − (a∗ij − akij))|w̄ij |

= [GW ∗(W ∗)−GW ∗(W̄ )] +
∑
ij

(a∗ij − akij)|w̄ij |

≥ [GW ∗(W ∗)−GW ∗(W̄ )]− ε

12

= ε− ε

12
=

11ε

12
,

and that

GWk (W k)−GW ∗(W ∗) =
∑
ij

akij |wkij | −
∑
ij

a∗ij |w∗ij | > −
ε

12

Hence, for all k > max(k1, k2), it holds that

GWk (W k)−GWk (W̄ )

= GWk (W k)−GW ∗(W ∗) +GW ∗(W ∗)−GWk (W̄ )

≥ 11ε

12
− ε

12
=

5ε

6
,

contradicting with (9). Therefore, W ∗ ∈ arg minW GW ∗(W ).
By Lemma 2, W ∗ satisfies the first-order optimality for (5).

5. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of our proposed
method in terms of CR, prediction accuracy with fine-tuning (FT)
and prediction accuracy without fine-tuning on various architectures
of deep neural networks. The fine tuning step uses the compressed
network parameters as an initialization for network retraining, which
often improves the prediction accuracy without changing the sparsity
of the network.

We apply our compression approaches to the problem of classi-
fying hand-written digits of the MNIST database, which has a train-
ing set of 60, 000 examples, and a prediction set of 10, 000 exam-
ples. We consider a fully connected neural network (namely NN3)
of size 784× 300× 1000× 300× 10 following the setting in [13],

and train it with 60,000 samples in MNIST. We also compare our
compression approach with Net-trim for a convolutional network
on CIFAR10 database, which contains 60, 000 samples of size of
32× 32 color images in 10 different classes. The convolutional net-
work contains two convolutional layers composed of 64 filters of
size of 5×5×3 for the first layer and 64 filters of size of 5×5×64
for the second layer, both followed by a max pooling layer, and three
fully connected layers 2304× 384× 192× 10.

Table 1. Comparison with Net-trim [13] for NN3 network on
MNIST dataset. ( Initial model prediction accuracy = 98.62%)

CR(%) prediction accuracy without FT(%) prediction accuracy with FT(%)

Net-trim Proposed Net-trim Proposed Net-trim Proposed

ε = 0.01 13.71 25.38 98.63 98.65 98.65 98.65

ε = 0.04 31.19 49.94 98.63 98.66 98.64 98.66

ε = 0.08 45.23 64.24 98.35 98.42 98.45 98.53

ε = 0.10 49.84 68.55 98.25 98.34 98.45 98.51

ε = 0.20 62.72 79.92 97.11 97.04 98.05 97.93

ε = 0.30 69.52 85.25 95.93 94.42 97.70 97.46

Table 2. Comparison with Net-trim [13] for CNN network on CI-
FAR10 dataset. ( Initial model prediction accuracy = 77.44% )

CR(%) prediction accuracy without FT(%) prediction accuracy with FT(%)

Net-trim Proposed Net-trim Proposed Net-trim Proposed

ε = 0.01 61.64 70.42 76.50 76.14 76.52 76.39

ε = 0.04 65.81 77.27 77.23 76.50 76.85 76.32

ε = 0.08 69.95 82.05 77.00 75.92 76.84 76.30

ε = 0.10 71.61 83.79 76.77 75.94 76.87 76.24

ε = 0.20 77.96 89.13 74.05 73.38 76.52 75.09

ε = 0.30 82.20 92.07 68.60 66.88 75.92 74.17

We set the parameter p = 100 in Algorithm 1 and terminate it
when the iterates k = 5, and the subproblem (7) is solved by the
ADMM algorithm [24] to enjoy scalability. Table 1 and Table 2
illustrates the results of network compression experiments by vary-
ing the parameter ε in problem (5). As can be seen from Table 1 and
Table 2, the proposed method achieves significantly higher compres-
sion ratio with comparable prediction accuracy (with or without fine
tuning) compared to Net-trim [13]. For example, Table 1 illustrate
that by setting ε = 0.1, the proposed method outperforms 37.54%
in terms of CR compared to Net-trim.

6. CONCLUSION

In this paper, we propose a log-sum minimization approach to prune
a large trained DNN layer by layer via enhancing the sparsity during
network trimming. To address the resulting nonconvex and nons-
mooth optimization problem, we present an iteratively reweighted
algorithm to solve it with global convergence guarantees. Specif-
ically, we prove that the sequence generated by our presented al-
gorithm must have cluster points, and every cluster points satisfies
the first-order optimality condition of the constrained log-sum mini-
mization problem. Simulation results demonstrate that the proposed
method achieves higher network compression ratio with comparable
prediction accuracy compared to Net-trim method.
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