
FAST OPTIMIZATION OF BOOLEAN QUADRATIC FUNCTIONS VIA ITERATIVE
SUBMODULAR APPROXIMATION AND MAX-FLOW

Aritra Konar and Nicholas D. Sidiropoulos

Dept. of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA

ABSTRACT

We consider the NP–hard combinatorial optimization problem of
minimizing arbitrary quadratic forms over the {0, 1} (Boolean) lat-
tice. While polynomial-time approximation algorithms do exist for
such problems, they suffer from the practical drawback of being
computationally involved – often a side effect of being agnostic to
the combinatorial structure inherent in the problem. In this paper,
we propose a computationally lightweight approximation alternative
which specifically exploits the combinatorial structure of the prob-
lem. The key result underlying our approach is that any Boolean
quadratic function can be expressed as a difference of quadratic sub-
modular functions, which enables us to construct and iteratively min-
imize a sequence of global submodular upper bounds on the cost
function. This entails solving a quadratic submodular function min-
imization problem at each step, which can be efficiently accom-
plished via the seminal Max-Flow algorithm. Overall, our algo-
rithm performs iterative approximation by solving a sequence of
maximum-flow problems. The merits of using this approach are il-
lustrated via simulations which indicate the very favorable perfor-
mance of our algorithm.

1. INTRODUCTION

Quadratically constrained quadratic programming (QCQP) consti-
tutes an important class of optimization problems with pervasive
applications in various engineering disciplines (see [1, 2] and ref-
erences therein). This paper considers an important sub-class of
QCQP where the goal is to minimize an arbitrary quadratic form
over the {0, 1} (Boolean) lattice. Such problems arise in perform-
ing maximum-likelihood {±1} multi-user detection [3], designing
binary spreading codes in CDMA systems [4], and computing most
probable configurations in undirected, discrete graphical models with
{0, 1} random variables [5]. The problem is non-convex and well
known to be NP–hard in the worst-case. Consequently, the design of
approximation algorithms which compute high-quality, albeit sub-
optimal solutions in polynomial-time, is well motivated for such
problems.

The prevailing approximation approach is a technique known
as Semidefinite Relaxation (SDR) [6], which uses matrix-lifting to-
gether with rank relaxation to obtain a relaxed, convex semidefinite-
programming (SDP) problem from the original QCQP formulation.
In general, the solution of the SDP problem is not guaranteed to be
rank-1, and a randomized rounding step is performed on the SDP so-
lution to obtain a feasible solution for the QCQP problem. In special
cases [7–9], it is possible to derive theoretical approximation guaran-
tees on the (expected) quality of the randomized solution obtained.
More recently, the work of [10] introduced a SDR technique for ob-
taining non-trivial upper and lower bounds on the optimal value of

Contact: (aritra,nikos)@virginia.edu.

QCQP problems involving minimization of convex quadratic forms
over the general integer lattice. To the best of our knowledge, no
such approximation bounds are currently known for SDR applied to
the more general case of minimizing arbitrary quadratic forms (not
necessarily convex) over the {0, 1} lattice. Additionally, a practical
limitation of employing SDR for approximating such problems is
its potentially high computational complexity, which stems from the
matrix-lifting step that effectively increases the number of problem
variables by an order of magnitude.

Another pertinent approximation strategy for such a class of
QCQP problems is the Successive Convex Approximation (SCA) [11–
14] framework. In this approach, the quadratic cost function is ex-
pressed as a difference of convex quadratic forms, and each combi-
natorial {0, 1} constraint is reformulated as a pair of quadratic in-
equalities. Thereafter, the non-convex functions appearing in both
the cost and constraint set are linearized about the current solution
to obtain a convex QCQP problem, which can be solved optimally
using off-the-shelf convex programming solvers. The solution ob-
tained is then set to be the linearization point in the subsequent it-
eration. Such an approach results in an inner approximation of the
given QCQP problem via a sequence of convex QCQP problems.
However, the cost of solving a generic convex QCQP problem at
every step can be computationally demanding when the number of
variables is large. Moreover, while SCA is a flexible framework for
approximating general non-convex problems, it does not explicitly
take into account the combinatorial properties any given problem
may possess.

Is it possible to devise an efficient polynomial-time approxima-
tion scheme which exploits the combinatorial structure inherent in
the problem at hand? In this paper, we provide an affirmative an-
swer to the above question. Our key enabling result is the following
fact which we establish in this paper: every Boolean quadratic func-
tion can be expressed as a difference of quadratic submodular func-
tions. Submodular functions constitute a special class of discrete
functions which are particularly notable for featuring a diminish-
ing returns property, while also exhibiting several other interesting
properties analogous to both convex and concave functions [15–17].
Leveraging the particular “convex” property that every submodular
function possesses a (discrete) subgradient, we are able to construct
a global submodular upper bound of the cost function at any given
point of the {0, 1} lattice. We exploit this attribute by using a dis-
crete optimization variant of the majorization-minimization (MM)
algorithm proposed in [18, 19], which iteratively minimizes a se-
quence of global submodular upper bounds on the quadratic cost
function. At every step of the algorithm, we are required to solve a
quadratic submodular function minimization problem, which is well
known [5] to be equivalent to computing the maximum-flow in a
certain weighted, directed graph, and can be efficiently solved in
polynomial-time [20–22].

To summarize, the MM algorithm exploits the difference of sub-

5591978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

modular functions structure of arbitrary quadratic forms over the
{0, 1} lattice to perform iterative minimization by solving a sequence
of Max-Flow problems. By design, the algorithm features monoton-
ically non-increasing cost and is computationally lightweight com-
pared to pre-existing alternatives. We provide experimental results
carried out on synthetic data which indicate the promising perfor-
mance of the approach.

2. PROBLEM STATEMENT AND BACKGROUND
Consider the problem of minimizing an arbitrary quadratic function
over the {0, 1}n hypercube

min.
x∈{0,1}n

{
f(x) := xTAx+ bTx

}
(1)

where the matrix A ∈ Sn is non-zero, symmetric and the vector
b ∈ Rn. Note that (1) contains the following {0, 1}n least-squares
problem

min.
x∈{0,1}n

‖Px− q‖22 (2)

as a special case, where P ∈ Rm×n and q ∈ Rn constitute the
data variables. Not only are such problems known to be NP–hard in
their general form, but it is also NP–hard to obtain constant-factor
approximation guarantees [23]. Consequently, we will settle for ap-
proximate minimization in polynomial-time.

For our purpose, it will be convenient to reformulate (1) in terms
of set-notation as follows: first, we define a ground set of finite
elements V = [n] := {1, · · · , n}. Then, every Boolean vector
x ∈ {0, 1}n can be represented as the indicator vector of a subset
S ⊆ V , i.e., i.e., x = 1S . Hence, problem (1) can be equivalently
expressed as

min
S⊆V

{
f(S) := 1

T
SA1S + bT

1S

}
(3)

where f : 2V → R is a set function that assigns a real value to any
subset S ⊆ V . Our polynomial-time approximation approach for (3)
is centered around exploiting a diminishing returns property associ-
ated with certain set functions known as submodularity.

Definition 1. [Submodular function] A set function f is said to
be submodular if f(A∪{v})− f(A) ≥ f(B∪{v})− f(B) for all
A ⊆ B ⊆ V \ {v}.

That is, given subsets A ⊆ B ⊆ V \ {v}, the marginal gain ob-
tained by adding an element v to A does not increase when we add
v to the superset B, which can be viewed as a natural diminishing
returns property.

Definition 2. [Modular function] A set function b is said to be
modular if and only if there exists a vector b ∈ Rn for all subsets
S ⊆ V such that b(S) = bT

1S =
∑

e∈S b(e).

Note that such a function satisfies the inequality in Definition 1 with
equality. The link between submodular functions and quadratic func-
tions has been formally established via the following proposition.

Proposition 1. [17, Proposition 6.3] A quadratic function f : S →
1
T
SA1S + bT

1S is submodular if and only if all off-diagonal ele-
ments of A are non-positive.

We remark that the special case of (3) where f is submodular,
corresponds to a (unconstrained) submodular function minimization
(SFM) problem. In a seminal paper [24], it was established that
such a class of combinatorial optimization problems can be solved

to global optimality in polynomial-time via the ellipsoid algorithm.
Follow-up work has produced several other optimal polynomial-time
algorithms for SFM, ranging from combinatorial methods [25–27],
to ones based on minimizing continuous, convex extensions of f
over the relaxed domain [0, 1]n (see [15] for more details) via convex
optimization techniques (e.g., subgradient methods [17], the Fujishige-
Wolfe algorithm [28], and cutting-plane methods [29]).

Additionally, the quadratic form of f in SFM can be further ex-
ploited to yield simpler and more efficient optimal algorithms for (3).
The premise behind this line of work is the following observation of
Kolmogorov et al.

Proposition 2. [5, Theorem 4.1] Every quadratic submodular func-
tion can be equivalently represented as a graph-cut function.

The above result implies that solving any instance of quadratic SFM
(3) is equivalent to computing the cut-set in a certain weighted, undi-
rected graph (explicitly constructed using A and b) which mini-
mizes the sum of weighted edges cut. Simply stated, in this case,
(3) is equivalent to solving a Min-Cut problem. By utilizing the cel-
ebrated Max-Flow Min-Cut theorem of Ford and Fulkerson [20], this
further implies that (3) can be optimally solved in polynomial-time
by any algorithm capable of computing the maximum flow between
a designated source and sink terminal in a weighted, directed graph
obtained via an appropriate reduction from the Min-Cut problem.
Owing to space limitations, we do not provide the explicit graph
construction here; instead we refer the interested reader to [5, Sec-
tion 4.2] for the details.

3. PROPOSED APPROACH
In this paper, we focus on the more general case of (3) where the
quadratic function f is not guaranteed to be submodular. Conse-
quently, the aforementioned results regarding quadratic SFM do not
apply directly. Since (3) is NP–hard in its general form, we aim to
approximately minimize (3) via polynomial-time algorithms. The
starting point of our approach is the following result regarding gen-
eral set functions.

Proposition 3. [18, Lemma 4], [19, Lemma 3.1] Every set function
f can be expressed as a difference of submodular functions (DSF)
f(S) = g(S) − h(S), ∀S ⊆ V , for some submodular functions g
and h.

While determining such a characterization may not be easy for gen-
eral f [19], in the special case where f is quadratic, such a charac-
terization can always be easily found, as we now show.

Proposition 4. [DSF representation of Boolean quadratic func-
tions] Note that any matrix A admits a representation of the form
A := A1−A2, where A1 = min{A,0} and A2 = min{−A,0}.
It is obvious that both A1 and A2 have non-positive off-diagonal
elements, which makes their associated quadratic forms submodu-
lar via Proposition 1. Defining g(S) := 1

T
SA11S + bT

1S
1 and

h(S) := 1
T
SA21S , it follows that (3) can be expressed as

min
S⊆V

{
f(S) := g(S)− h(S)

}
(4)

Hence, any quadratic set function can be represented as a difference
of quadratic submodular functions by simply evaluating the sign of
the entries in the matrix A and subsequently constructing A1 and
A2.

1Note that the sum of a submodular and modular function is submodular.

5592

In order to exploit the DSF structure inherent in our problem, we
utilize a discrete optimization analogue of the majorization-
minimization (MM) algorithm proposed in [18, 19]. The algorithm
is iterative in nature and requires initialization from a starting set
S0 ⊆ V . At every subsequent iteration k ∈ N, a tight modular lower
bound mk(S) := mT

k 1S of h(S) is constructed about the current
solution set Sk such that

h(S) ≥ mk(S), ∀S ⊆ V, and h(Sk) = mk(Sk). (5)
From (5), we conclude that

f(S) = g(S)− h(S) ≤ g(S)−mk(S),∀S ⊆ V (6a)
and f(Sk) = g(Sk)− h(Sk) = g(Sk)−mk(Sk) (6b)

Hence, at each iteration k, we obtain a tight submodular upper bound
φk(S) = g(S) −mk(S) of f(S). On replacing f(S) by φk(S) in
(3) at each iteration, we minimize an upper bound on f(S). Note
that the subproblem

min
S⊆V

{
φk(S) = 1

T
SA11S + (b−mk)

T
1S

}
(7)

that we are required to solve at each iteration corresponds to an in-
stance of quadratic SFM. From the discussion earlier on in this sec-
tion regarding solving quadratic SFM problems, we conclude that
any Max-Flow algorithm can be utilized to solve (7).

From the preceding description of the algorithm, it is clear that
the key ingredient required is the construction of the modular lower
bound mk(S) of h(S) at each iteration which satisfies the desired
properties (5). Such a modular lower bound can be computed by uti-
lizing the notion of submodular subdifferentials, which is formally
defined as follows.

Definition 3. [Subdifferential Sets of Submodular functions] [16,
Section 6.2] The subdifferential set of a submodular set function h
at a given set Y ⊆ V is defined as
∂h(Y) = {y ∈ Rn : h(X)− h(Y) ≥ y(X)− y(Y), ∀ X ⊆ V}

(8)
where every vector y ∈ ∂h(Y) defines a modular function y(X) =
yT

1X , ∀X ⊆ V . Observe that (8) is reminiscent of the definition
of subdifferential sets of convex functions. For the purpose of con-
structing our desired modular lower bound, we will be required to
compute a subgradient vh

Y ∈ ∂h(Y) of h at a given set Y . In order
to do so, it suffices to compute an extreme point of the subdifferential
set ∂h(Y). Towards this end, we use the fact that the set of extreme
points which describe ∂h(Y) admit the following characterization.

Proposition 5. [Extreme points of submodular subdifferentials]
[16, Theorem 6.11] For each Y ⊆ V , a vector vh

Y is an extreme
point of ∂h(Y) if and only if there exists a maximal chain C : ∅ =
S(0) ⊂ S(1) ⊂ · · · ⊂ S(n) = V which includes Y (i.e., Y = S(j)

for some j ∈ [n]) such that the modular function vhY associated with
vh
Y satisfies

vhY(S(i) \ S(i−1)) = vhY(S(i))− vhY(S(i−1))

= h(S(i))− h(S(i−1)), ∀ i ∈ [n]
(9)

Using this description, Edmonds [30] prescribed the following ap-
proach for computing an extreme point of ∂h(Y). Given a set Y ,
let π ∈ Rn represent a permutation of the ground set V = [n]
which contains the elements of Y in its first |Y| positions, i.e., we
have π(i) ∈ Y, ∀ i ≤ |Y|. The remaining n − |Y| positions of π
can be assigned randomly, provided that π, in its entirety, is a valid
permutation of [n]. Every such permutation vector can be used to

construct a maximal chain S(0)
π ⊂ S(1)

π ⊂ · · · ⊂ S(n)
π with ele-

ments S(0)
π = ∅, and S(i)

π = {π(1),π(2), · · · ,π(i)}, ∀ i ∈ [n].
Note that we have S|Y|π = Y . Using this chain, we define a vector
vh
Y,π ∈ Rn with entries

vh
Y,π(π(i)) =

{
h(S(1)

π), if i = 1

h(S(i)
π)− h(S(i−1)

π), otherwise
(10)

From the above construction, it can be verified that vh
Y,π satisfies the

description of an extreme point of the subdifferential set of ∂h(Y)
as listed in Proposition 5. Using vh

Y,π , we next define the following
modular function

vhY,π(S) :=
∑
e∈S

vh
Y,π(e) (11)

for all subsets S ⊆ V . It can be shown that [24] for every set Y ⊆ V ,
the modular function vhY,π(S) satisfies the following properties:

(A1) vhY,π(S) ≤ h(S), ∀S ⊆ V

(A2) vhY,π(S
(i)
π) = h(S(i)

π),∀ i ∈ [n]

Furthermore, from the last property, we obtain the condition

vhY,π(S|Y|π) = vhY,π(Y) = h(Y) (12)
Taken together, these conditions imply that the modular function
vhY,π(S) obtained by approximating the submodular function h(S)
about the given set Y satisfies the requisite properties (5) needed for
use in the MM algorithm.

We now complete our description of the MM algorithm. Given
the current solution set Sk, we first compute a subgradient vh

Sk,πk
∈

∂h(Sk) via Edmond’s procedure, which incurs complexity of the or-
der O(nM), where M is an upper-bound on the complexity of eval-
uating h at a set S. The subgradient vh

Sk,πk
defines a tight modular

lower bound vhSk,πk
(S) of h(S) about Sk. In turn, this yields the

quadratic submodular upper bound
φk(S) = g(S)− vhSk,πk

(S) = 1
T
SA11S + (b− vh

Sk,πk
)T1S

(13)
of f(S) which is tight at S = Sk. Hence, at each iteration k ∈ N,
we are required to solve a quadratic SFM problem of the form (7),
which can be accomplished by using a Max-Flow algorithm. The
solution obtained is then updated to be the solution set Sk+1 for the
next iteration of the MM algorithm.

Overall, the algorithm exploits the DSF structure of the quadratic
cost function f(S) to successively minimize a sequence of global
upper bounds of f(S), while respecting the discrete nature of the
constraints at every step.

Algorithm 1 : Iterative Max Flow (IMF)
Initialization: Set k := 0,S0 ⊆ V and generate a permutation
vector π0 corresponding to S0.
Repeat
• Construct modular lower bound vhSk,πk

(S) of h(S) about Sk
via Edmond’s procedure.

• Sk+1 = arg min
S⊆V
{φk(S) := 1

T
SA11S+(b−vh

Sk,πk
)T1S}

via a Max-Flow algorithm.

• Form random permutation πk+1 corresponding to Sk+1.

• Set k := k + 1.

Until termination criterion is met

From the description of the algorithm, we obtain the following chain

5593

of inequalities
f(Sk+1) = g(Sk+1)− h(Sk+1) (14a)

≤ g(Sk+1)− vhSk,πk
(Sk+1) (14b)

≤ g(Sk)− vhSk,πk
(Sk) (14c)

= g(Sk)− h(Sk) = f(Sk) (14d)
where the first inequality follows from the fact that h(Sk+1) ≥
vhSk,πk

(Sk+1), the second inequality is due to the optimality of Sk+1

and the last inequality stems from the tightness of the modular ap-
proximation at S = Sk. Hence, the algorithm generates a sequence
of solution sets {Sk}k≥0 with monotonically non-increasing cost.

Remark 1: While the approach outlined in this section concerns (ap-
proximate) minimization of quadratic functions subject to Boolean
{0, 1} constraints, it can also be suitably modified to approximate
Boolean quadratic maximization problems, i.e., problem (1) with
minimization replaced by maximization. To see this, we again ex-
ploit the DSF structure of f(S), albeit in a different manner. At
each iteration k ∈ N, we now construct a tight modular lower bound
mk(S) for the submodular function g(S) about the current solution
set Sk while leaving h(S) unchanged. On replacing g(S) by its sur-
rogate mk(S), we obtain the following maximization subproblem

max
S⊆V

{
ψk(S) = −1T

SA21S + (b+mk)
T
1S

}
(15)

which now corresponds to maximizing a global lower bound on
f(S). Note that (15) is equivalent to min

S⊆V
{−ψk(S)}, which is again

an instance of quadratic SFM, and thus, can be solved optimally in
polynomial-time via a Max-Flow algorithm. Repeatedly applying
this MM principle results in maximizing a sequence of global lower
bounds on f(S), and the algorithm now generates a sequence of so-
lution sets {Sk}k≥0 with monotonically non-decreasing reward.

4. SIMULATION RESULTS
We carried out our experiments in MATLAB on a Windows desktop
with 4 Intel i7 cores and 16GB of RAM. We also used MATLAB’s
in-built Max-Flow solver (which uses the algorithm of [22] by de-
fault) to solve the subproblems in the IMF algorithm.

An application in performing maximum-aposteriori (MAP) in-
ference in undirected graphical models with Boolean {0, 1} random
variables is considered to illustrate the performance of the algorithm.
In this case, the joint probability distribution of n random variables
{Xi}ni=1 taking values Xi = {0, 1}, ∀ i ∈ [n] is represented by a
graph G = (V, E) with vertex set V = [n] and edge set E ⊆ [n]×[n]
that admits the following decomposition over pairwise cliques

P (x1, x2, · · · , xn) =
1

Z
exp(−H(x1, x2, · · · , xn)) (16)

where Z is a normalizing constant (i.e., the partition function) and

H(x1, x2, · · · , xn) :=
∑
i∈[n]

bixi +
∑

(i,j)∈E

aijxixj (17)

denotes the energy function. Assuming that the model parameters
{bi}i∈[n] and {aij}(i,j)∈E are known apriori, the problem of deter-
mining the most probable configuration seeks to find an assignment
of random variables which maximizes (16), or equivalently, mini-
mizes the energy function (17). Clearly, the problem is equivalent to
minimizing an arbitrary quadratic form over the {0, 1} lattice.

Figure (1a) demonstrates the performance of the algorithm for a
synthetically generated instance involving n = 15 variables. Here,
the model parameters where generated from a standard normal dis-
tribution. The graph G was initially chosen to be fully-connected,

1 2 3 4 5 6 7 8 9 10

of iterations

-102

-101

-100

C
os

t F
un

ct
io

n

IMF Algorithm
Exhaustive Search

(a) Illustrative example on single instance with n = 15.

0 2 4 6 8 10 12 14 16 18 20

of iterations

-4500

-4000

-3500

-3000

C
os

t F
un

ct
io

n

Init. 1
Init. 2
Init. 3
Init. 4
Init. 5

(b) Illustrative example on single instance with n =
1000.

and then a random subset of the edges was removed. We initialized
our IMF algorithm from a randomly generated {0, 1}n vector and
performed 10 iterations of Max-Flow. Since the problem is small in
size, we computed the optimal solution of the inference problem via
exhaustive search to serve as a benchmark against IMF. It can be ob-
served that the algorithm quickly converges to a solution with near
optimal cost; the overall running time was < 10 milli-seconds. We
noted that the choice of initialization has an impact on the quality of
the attained solution. However, by using at most 4 re-initializations,
we observed that IMF always attained a near optimal solution.

To demonstrate the scalability of the algorithm, we performed
synthetic experiments with n = 1000 variables; a representative
example showing the evolution of the cost function from different
random initialization points is provided in Figure (1b). The average
running time was ∼ 3.5 seconds overall, which is very satisfactory.
It can be observed that the algorithm is indeed affected by the choice
of initialization. Unfortunately, we were unable to benchmark the
performance of IMF in this regime since obtaining a lower bound
from SDR proved to be too expensive in this case. In the future, we
will explore the design of judicious initialization strategies to take
advantage of IMF’s inherent speed.

5. CONCLUSIONS
In this paper, we considered the NP–hard problem of minimizing an
arbitrary quadratic form over the {0, 1} lattice and proposed an iter-
ative approximation algorithm for the task. The algorithm exploits
a difference of quadratic submodular functions representation of the
cost function to successively construct and minimize a sequence of
global submodular upper bounds, which entails solving a Max-Flow
problem at each step. Experiments on synthetic data showcase the
promising performance of the algorithm in terms of attained solution
quality and running time.

5594

6. REFERENCES

[1] Z.-Q. Luo, and T.-H. Chang, “SDP relaxation of homogeneous
quadratic optimization: approximation bounds and applica-
tions”, in Convex Optimization in Signal Processing and Com-
munications, (D. Palomar and Y. Eldar, eds.), pp. 117–165,
Cambridge University Press, 2010.

[2] A. d’Aspremont, and S. Boyd, “Relaxations and Randomized
Methods for Nonconvex QCQPs,” EE392 Lecture Notes, Stan-
ford University, 2003.

[3] W.-K. Ma, T. N. Davidson, K. M. Wong, Z.-Q. Luo, and P.-
C. Ching, “Quasi-maximum-likelihood multiuser detection us-
ing semidefinite relaxation with applications to synchronous
CDMA”, IEEE Trans. Signal Process., vol. 50, no. 4, pp. 912–
922, Aug. 2002.

[4] G. N. Karystinos, and A. P. Liavas, “Efficient computation
of the binary vector that maximizes a rank-deficient quadratic
form”, IEEE Trans. Inf. Theory, vol. 56, no. 7, pp. 3581–3593,
July 2010.

[5] V. Kolmogorov, and R. Zabih, “What energy functions can be
minimized via graph cuts?”, IEEE Trans. Patt. Analys. and
Mach. Intell. vol. 1, no. 2, pp. 147–159, Jan. 2004.

[6] Z.-Q. Luo, W.-k. Ma, A.-C. So, Y. Ye and S. Zhang, “Semidefi-
nite relaxation of quadratic optimization problems,” IEEE Sig-
nal Process. Mag., vol. 27, no. 3, pp. 20–34, May 2010.

[7] M. X. Goemans, and D. P. Williamson, “Improved approxima-
tion algorithms for maximum cut and satisfiability problems
using semi-definite programming,” J. ACM, vol. 42, no. 6, pp.
1115–1145, Nov. 1995.

[8] Y. Nesterov, “Semidefinite relaxation and nonconvex quadratic
optimization,” Optim. Meth. Softw., vol. 9, pp. 140–160, 1998.

[9] S. Zhang, “Quadratic maximization and semidefinite relax-
ation,” Math. Program., vol. 87, pp. 453–465, May 2000.

[10] J. Park, and S. Boyd, “A semidefinite programming method for
integer convex quadratic minimization,” Optim. Lett., vol. 12,
no. 3, pp. 499–518, May 2018.

[11] B. Marks and G. Wright, “A general inner approximation algo-
rithm for nonconvex mathematical programs,” Oper. Res., vol.
26, no. 4, pp. 681–683, 1978.

[12] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential para-
metric convex approximation method with applications to non-
convex truss topology design problems,” J. Global Optim., vol.
47, no. 1, pp. 29—51, 2010.

[13] G. Scutari, F. Facchinei, L. Lampariello, “Parallel and dis-
tributed methods for constrained nonconvex optimization-part
I: Theory,” IEEE Trans. Signal Process., vol. 65, no. 8, pp.
1929–1944, April 2017.

[14] G. Scutari, F. Facchinei, L. Lampariello, S. Sardellitti, and P.
Song, “Parallel and distributed methods for constrained non-
convex optimization-part II: Applications in communications
and machine learning,” IEEE Trans. Signal Process., vol. 65,
no. 8, pp. 1945–1960, April 2017.

[15] L. Lovasz, “Submodular functions and convexity”, in Math-
ematical Programming – The State of the Art, pp. 235–257,
Springer Berlin Heidelberg, 1983.

[16] S. Fujishige, “Submodular functions and optimization”, 2nd
edition, Annals of Disc. Math., vol. 58, 2005.

[17] F. Bach, “Learning with submodular functions: A convex op-
timization perspective,” Found. Trends in Mach. Learn., vol. 6,
no. 2-3, pp. 145–373, Dec. 2013.

[18] M. Narasimhan, and J. Bilmes, “A submodular-supermodular
procedure with applications to discriminative structure learn-
ing,” arXiv preprint arXiv:1207.1404, 2012.

[19] R. Iyer, and J. Bilmes, “Algorithms for approximate minimiza-
tion of the difference between submodular functions, with ap-
plications”, arXiv preprint arXiv:1207.0560, 2013.

[20] L. Ford, and D. Fulkerson. “Flows in Networks”, Princeton
University Press, 1962.

[21] A. V. Goldberg, and R. E. Tarjan, “A new approach to the
Maximum-Flow problem,” J. ACM, vol. 35, no. 4, pp. 921–
940, Oct. 1988.

[22] Y. Boykov, and V. Kolmogorov, “An experimental comparison
of Min-Cut/Max-Flow algorithms for energy minimization in
vision”, IEEE Trans. Patt. Analys. and Mach. Intell. vol. 26,
no. 9, pp. 1124–1137, Sept. 2004.

[23] S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness
of approximate optima in lattices, codes, and systems of linear
equations”, J. Comp. Syst. Sciences, vol. 54 , no. 2, pp. 317–
331, April 1997.

[24] M. Grotschel, L. Lovasz, and A. Schrijver, “The ellipsoid al-
gorithm and its consequences in combinatorial optimization”,
Combinatorica, vol. 1, no. 2, pp. 169—197, June 1981.

[25] A. Schrijver, “A combinatorial algorithm minimizing submod-
ular functions in strongly polynomial time”, J. Combin. Theory
Ser. B, vol. 80, no. 2, pp. 346—355, Nov. 2000.

[26] S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial
strongly polynomial algorithm for minimizing submodular
functions,” J. ACM, vol. 48, no. 4, pp. 761—777, July 2001.

[27] J. B. Orlin, “A faster strongly polynomial time algorithm for
submodular function minimization,” Math. Program., vol. 118,
no. 2, pp. 240—251, June 2009.

[28] S. Fujishige, and S. Isotani, “A submodular function minimiza-
tion algorithm based on the minimum norm base”, Pacific J. of
Optim., vol. 7, no. 1, pp. 3—17, Jan. 2011.

[29] Y. T. Lee, A. Sidford, and S. C. Wong, “A faster cutting plane
method and its implications for combinatorial and convex op-
timization”, in Proc. IEEE FOCS, pp. 1049–1065, Oct. 17-20,
2015, Berkley, CA.

[30] J. Edmonds, “Submodular functions, matroids and certain
polyhedra”, in Combinatorial structures and their applica-
tions, (G. Goos, J. Hartmanis, and J. van Leeuwen, eds.), vol.
11, Springer, 1970.

5595

		2019-03-18T11:02:09-0500
	Preflight Ticket Signature

