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ABSTRACT
The problem of estimating receiver or sender node positions
from measured receiver-sender distances is a key issue in dif-
ferent applications such as microphone array calibration, ra-
dio antenna array calibration, mapping and positioning using
UWB or using round-trip-time measurements between mo-
bile phones and WiFi-units. In this paper we address the
problem of optimally estimating a receiver position given a
number of distance measurements to known sender positions,
so called trilateration. We show that this problem can be
rephrased as an eigenvalue problem. We also address dif-
ferent error models and the multilateration setting where an
additional offset is also unknown, and show that these prob-
lems can be modeled using the same framework.

Index Terms— Trilateration, Calibration, Optimal esti-
mation, Multilateration.

1. INTRODUCTION

Sound localization has been a topic of interest in a wide range
of applications for centuries, and is well known to be a diffi-
cult problem, especially in a reverberating room environment
(see e.g. [1–8], and the references therein). Measuring the
time it takes for the signal to reach each sensor, the position of
the source can be estimated. In the literature, this is referred
to as either time of arrival (TOA) estimation, if the time of
signal emission is known, or otherwise time difference of ar-
rival (TDOA) estimation, where only the relative time delays
are used. Common techniques for delay estimation include
different variations on cross-correlation or canonical corre-
lation analysis (CCA), which then allows the sources to be
located in a second step using tri- and multi-lateration (see
e.g. [9,10]). Other examples of sensor from which we can get
distance measurements include Ultra-Wideband, WiFi signal
strength and Narrowband Radio Signals [11–14].

1.1. Trilateration and Related Work
To formalize our problem, we want to recover the position
of an unknown receiver x ∈ Rn, given the positions of N
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anchors sj and distance measurements dj to these anchors.
Typically if the Euclidean distances are measured we aim at
having ‖x − sj‖ ≈ dj for j = 1, 2, . . . , N . For Gaussian
noise the Maximum Likelihood (ML) estimate is given by the
following optimization problem,

Problem 1 x? = argminx∈Rn

∑N
j=1 (‖x− sj‖ − dj)2 .

This is a non-linear and non-convex optimization problem
which can have several local minima.

Previously several methods have been proposed for solv-
ing Problem 1. In [15] the authors used an SDP relaxation
approach. The authors solve a convex relaxation of the prob-
lem, and there is no guarantee that the solution will be optimal
in the original cost. Recently [16] presented a fixed point it-
eration for solving Problem 1.

A standard way to derive a linear solver is to consider the
equations ‖x−sj‖2 = d2j . Forming differences between pairs
of these equations the quadratic terms in x cancel, leaving
only linear equations in x,

2 (si − sj)
T
x = d2j − d2i + sTj sj − sTi si (1)

which can be solved in a least squares sense. However, this
does not minimize any meaningful cost (see Figure 1). Vari-
ants of this method can be constructed by e.g. by taking the
difference of all points to one reference point or by taking the
difference with the mean of all points, see [17].

In [15] the authors also present a globally optimal method
for minimizing the following surrogate function,

h(x) =
∑

j

(
‖x− sj‖2 − d2j

)2
. (2)

They consider the equivalent problem of minimizing

h(x, α) =
∑

j

(
α− 2xT sj + sTj sj − d2j

)2
, (3)

under the quadratic constraint α = xTx. They then set up
the Lagrangian and after some manipulation end up with a
single equation that only depends on the multiplier. In [15]
this equation is then solved using bisection.

In [18] Zhou presented another method for the minimizing
the squared distances loss. To solve the problem [18] intro-
duce the artificial constraint

∑
j‖x− sj‖2 =

∑
jd

2
j , which is

not satisfied in general, resulting in sub-optimal solutions.
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In [19] the authors propose to minimize the maximum
likelihood cost in Problem 1 by solving a sequence of
weighted versions of (2), in an IRLS-like fashion [20].

1.2. Non-Gaussian Error Models

When estimating the distances using the signal strength (see
e.g. [21]) the noise often becomes Gaussian when considering
the measured power

Pj = b+ k log‖x− sj‖+ ε, ε ∈ N (0, σ) (4)

or equivalently log‖x − sj‖2 = 2
Pj−b

k + ε′ where ε′ ∈
N (0, 2σ/k). Here b and k are model parameters that we as-
sume to be known. This leads to the following ML estimator
(where mj = 2

Pj−b
k ),

Problem 2 x? = argminx∈Rn

∑
j

(
log‖x− sj‖2 −mj

)2
.

1.3. Multilateration

In the multilateration setting we have measurements to a num-
ber of known sender positions. These measurements contain
a common unknown offset which also has to be estimated. In
this case the ML estimate (under the assumption of Gaussian
noise) is given as the solution to

Problem 3 x? = argminx∈Rn

∑N
j=1 (‖x− sj‖ − (dj + o))

2
.

1.4. Paper Contributions

The cost functions in Problem 1 and 2 are both on the form

h(x) =
∑

j

(
Ψ(‖x− sj‖2)−mj

)2
(5)

with Ψ(x) =
√
x and Ψ(x) = log x respectively. We can

get an approximation by replacing Ψ with its first order Tay-
lor expansion. The linearization point is chosen as the point
xj which satisfies Ψ(xj) = mj . Note that this does not de-
pend on the receiver position. By differentiating Ψ(x) and
inserting the linearization points, the approximations of the
cost functions in Problem 1 and 2 become

h1(x) =
∑

j

1

4d2j

(
‖x− sj‖2 − d2j

)2
, (6)

h2(x) =
∑

je
−2mj

(
‖x− sj‖2 − emj

)2
, (7)

and for the multilateration cost function in Problem 3 we get

h3(x) =
∑

j

1

4(dj + o)2
(
‖x− sj‖2 − (dj + o)2

)2
. (8)

Note that these approximate functions have very similar
structure.

In this paper we present fast closed form solutions to the
two non-convex optimization problems

min
x

∑
jwj

(
‖x− sj‖2 − d2j

)2
, (w-TOA)
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Fig. 1. Comparison of cost functions for a synthetic instance
with two local minima. Left to right: Difference of squares as
in (1), Weighted approximation (6), True likelihood.

min
x, o

∑
jwj

(
‖x− sj‖2 − (dj + o)2

)2
, (w-TDOA)

by deriving equivalent eigenvalue problems. In contrast to
previous approaches we can enumerate all stationary points
and guarantee global optimality. Our method works for arbi-
trary dimension. Since we enumerate all stationary points we
are also able to identify situations where there are multiple
good competing hypotheses. Additionally we further explore
the IRLS-like scheme used in [19] to minimize different cost
functions corresponding to ML estimates for different noise
distributions, for example as in Problem 2.

2. OPTIMAL TRILATERATION

In this section we will show that the problem (w-TOA) is
equivalent to an eigenvalue problem. The cost function in
(w-TOA) can be written as

h(x) =
∑

jwj

(
xTx− 2xTsj + sTj sj − d2j

)2
. (9)

Since the cost is differentiable everywhere, the globally opti-
mal solution must lie at a stationary point of h(x). The first
order optimality conditions are∇h(x) =

4
∑

jwj

(
xTx− 2xTsj + sTj sj − d2j

)
(x− sj) = 0. (10)

This gives us n polynomial equation system of degree 3 in n
unknowns. Naive application of the Bezout bound [22] for
this system yields that there are at most 3n solutions (where
n is dimension of the ambient space). However, we will show
that due to the specific structure of the equations, there are in
general only 2n+ 1 stationary points.

2.1. Simplifying the Equations

Collecting the terms in (10) by degree we get

1

4
∇h(x) = (

∑
jwj)(x

Tx)x (11)

−
(
xTxI + 2xxT

) (∑
wjsj

)
(12)

+

∑
j

wj

(
(sTj sj − d2j )I + 2sjs

T
j

)x (13)

+
∑

jwj

(
d2j − sTj sj

)
sj = 0. (14)
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Since the global coordinate system is arbitrary we can choose
this to simplify the equations. Similarly to the approach in
[18] we start by translating the senders sj with

t = −(
∑

jwjsj)/(
∑

jwj). (15)

This ensures that
∑

j wjsj = 0 which cancels all the
quadratic terms in (12). Similarly, since the cost function
is homogeneous in the weights, we can w.l.o.g. assume that∑

j wj = 1, which make the coefficients for all third degree
terms one. The equations are now of the form

(xTx)x +Ax + b = 0. (16)

The matrix A is symmetric, and thus we can perform an or-
thogonal eigenvalue decomposition A = UDUT . Perform-
ing the change of variables x → Ux and b → Ub, the equa-
tions separate and we get (since xTx = (Ux)TUx)

(xTx)xi +Diixi + bi = 0, i = 1, 2, . . . , n. (17)

2.2. Deriving the Eigenvalue Problem

Multiplying each equation in (17) with xi we get

(xTx)x2i +Diix
2
i + bixi = 0, i = 1, 2, . . . , n. (18)

With some abuse of notation we use x2 to denote the vector
of pure squares, i.e. x2 = (x21, x

2
2, . . . , x

2
n)T . The equations

in (17) and (18) can then be written as

(xTx)

x2

x
1

 =

−D −diag(b) 0
0 −D −b
1T 0T 0


︸ ︷︷ ︸

=:M

x2

x
1

 . (19)

where the last row is the trivial equation (xTx) = 1Tx2.
Note that the matrix in (19) is a constant square matrix and
does not depend on the unknowns x. Additionally the matrix
M can easily be computed for a given problem instance.

Any solution to the original problem (10) must also satisfy
(19) (after appropriate change of variables). This means that
for any solution x we have that the vector (x2,x, 1)T is an
eigenvector to M with eigenvalue xTx. So to enumerate all
solutions to the original system we do the following:

1. Compute matrix M as described above.

2. Compute all eigenvectors.

3. Normalize eigenvectors such that the last element is one
and extract x from the corresponding elements.

4. Evaluate original cost at each stationary point candidate
and choose the one with smallest cost.

While it is possible that there are eigenvectors which do not
correspond to a stationary point, all stationary points are
among the eigenvectors, so by enumerating all of them we
are guaranteed to find the global optimum.

2.3. Stationary Points and Degenerate Configurations

From the results in the previous section, it follows that there
are at most 2n + 1 stationary points with different values for
xTx. In general each eigenvector will corresponds to a so-
lution of the original system. However, it is possible to have
eigenvalues with higher multiplicity. This happens for exam-
ple in degenerate situations (e.g. all senders lie on a line).
Note that in this case (19) still holds, and we still recover the
correct eigenvalues (i.e. values of xTx). However, since the
eigenspaces are not necessarily one-dimensional extra care
must be taken to recover the solutions.

2.4. Optimal Multilateration

In this section we consider the multilateration case where we
also need to estimate an unknown offset between the senders
and the receiver. Similarly to the trilateration problem the cost
function can be expanded as h(x, o) =∑

jwj

(
xTx− 2xTsj + sTj sj − d2j − 2djo− o2

)2
. (20)

The first order optimality conditions are1 0 = 1
4∇h(x, o) =

∑
j

wj

(
xTx− o2 − 2

(
xT , o

)(sj

dj

)
+ sT

j sj − d2j

)(
x− sj

o+ dj

)
.

Again, shifting the coordinate systems (this time also in o) we
can cancel the quadratic terms, and the equations become

(xTx− o2)
(
x, o

)T
+A

(
x, o

)T
+ b = 0. (21)

Now the goal is to transform these equations into an eigen-
value problem. Unfortunately it is not possible to use the di-
agonalization trick here. The last n+1 rows are already given
by (21) and we only need to determine the top n rows, i.e.

(xTx− o2)


x2

o2

x
o
1

 =

 ? ? ?
0T −A −b(

1T ,−1
)

0T 0



x2

o2

x
o
1

 , (22)

Let λ = xTx− o2. Multiplying (21) with diag(x, o) we get

λ
(
x2, o2

)T
= −diag(x, o)

(
A
(
x, o

)T
+ b
)
. (23)

This almost yields the missing rows, except for a few quadratic
mixed terms (e.g. x1x2) appearing in the RHS. To eliminate
the mixed quadratic terms, the goal is to the express them in
monomials appearing in the eigenvector, i.e. (x2, o2,x, o, 1).

Multiplying the first equation in (21) with x2 and sub-
tracting the second equation multiplied with x1, any terms
containing λ cancel, and we are left with an equation contain-
ing only mixed quadratic terms and monomials which appear

1To simplify calculations the last equation has changed sign.
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Fig. 2. Top left: Distribution of errors for synthetic noise-less
instances. Top right: Runtime (in ms) for different number of
senders. Bottom: RMS error in receiver position for various
amounts of noise.

in the eigenvector in (22). Doing this for all pairs of equations
in (21) yields a set of

(
n+1
2

)
equations, on the form

C0m + C1

(
x2, o2,x, o, 1

)T
= 0 (24)

where m is the vector of monomials containing the mixed
quadratic terms. Inserting m = −C−10 C1

(
x2, o2,x, o, 1

)T
into (23) we can eliminate all mixed terms and recover the
missing rows in the eigenvalue problem (22).

3. EXPERIMENTS AND APPLICATIONS

3.1. Numerical Stability and Computational Cost

We evaluated our method on synthetically generated data.
Figure 2 shows the equation residuals (left) and the runtime
plotted against the number of senders (right).

3.2. Maximum Likelihood Estimation using IRLS

Since we can solve the weighted problem (w-TOA) optimally,
we can use this to iteratively minimize the true ML cost func-
tions. We iterate the following two steps until convergence:

1. xt = arg minx

∑
jw

t
j

(
‖x− sj‖2 − d2j

)2
2. wt+1

j = (2‖xt − sj‖ (‖xt − sj‖+ dj))
−1.

These weights are chosen such that the gradients of the
ML and the weighted cost align in each iteration, i.e.

∇x wj

(
‖x− sj‖2 − d2j

)2
= ∇x (‖x− sj‖ − dj)2 (25)

This ensures that any limit point is a stationary point of the
original cost. Note that this weighting is different from the
weighting used in [19].

Table 1. RMS errors (meters) and total execution time (sec-
onds) when running eight real UWB datasets.

Data- Zhou Luke SR-LS R-LS ML Prop. Prop.
set [18] [16] [15] [15] IRLS

1 0.66 0.34 0.40 0.34 0.34 0.32 0.34
2 0.65 0.52 0.54 0.52 0.52 0.52 0.52
3 11.05 0.64 1.18 0.64 0.64 0.42 0.64
4 0.54 0.31 0.44 0.32 0.31 0.30 0.31
5 0.64 0.34 0.41 0.34 0.34 0.33 0.34
6 0.47 0.31 0.37 0.31 0.31 0.28 0.31
7 0.53 0.32 0.35 0.32 0.32 0.31 0.32
8 0.74 0.39 0.48 0.39 0.39 0.36 0.39

Time 0.43 6.49 3.63 93.00 33.41 0.50 2.13

Similarly, to solve Problem 2 we update the weights as

wt
j =

log(‖xt − sj‖2)−mj

log(‖xt − sj‖2)(‖xt − sj‖2 − emj )
. (26)

Figure 2 shows the RMS error in receiver positions for
different amounts of noise in a setup of six senders and one
receiver, all sampled uniformly from a unit cube. We com-
pare the proposed method and its IRLS application as just
presented with Luke [16], the R-LS solver from [15] and the
SWLS solver from [19]. All methods perform similarly ex-
cept for Luke which occasionally convergences to the wrong
stationary point.

3.3. Real Data Experiment

We evaluate our method using TOA datasets gathered with an
ultra-wideband (UWB) setup. Six senders were kept station-
ary as a single receiver was moved through the setup. Ground
truth for sender and receiver positions was determined us-
ing an optical motion capture system. We compare the pro-
posed method with Zhou [18], Luke [16], the SR-LS solver
from [15] and the R-LS solver from [15] (see Table 1). For
reference we include the ML estimate found by solving Prob-
lem 1 using standard iterative optimization methods initial-
ized at the ground truth positions. All algorithms were im-
plemented in MATLAB. In many cases the proposed solver
without IRLS performs best. This is likely due to that the
errors are not completely Gaussian.

4. CONCLUSION

In this paper we have introduced two eigenvalue solvers
that give closed-form-solutions to two different non-linear
weighted least squares problems. We have also shown how
these solvers can be used to do optimal trilateration and
multilateration.
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