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ABSTRACT
The non-negative matrix factorization (NMF) model with an addi-
tional orthogonality constraint on one of the factor matrices, called
the orthogonal NMF (ONMF), has been found to provide improved
clustering performance over the K-means. The ONMF model is
a challenging optimization problem due to the orthogonality con-
straint, and most of the existing methods directly deal with the
constraint in its original form via various optimization techniques.
In this paper, we propose an equivalent problem reformulation that
transforms the orthogonality constraint into a set of norm-based
non-convex equality constraints. We then apply a penalty approach
to handle these non-convex constraints. The penalized formulation
is smooth and has convex constraints, which is amenable to efficient
computation. We analytically show that the penalized formulation
will provide a feasible stationary point of the reformulated ONMF
problem when the penalty is large. Numerical results show that the
proposed method greatly outperforms the existing methods.

Index Terms— Clustering, orthogonal NMF, penalty method.

1. INTRODUCTION
Clustering is one of the most fundamental data mining tasks and
has an enormous number of applications [1]. Among the existing
clustering methods, the K-means [2] is the most widely used one,
thanks to its simplicity [3]. However, the K-means may not always
yield satisfactory clustering results. On one hand, from an optimiza-
tion perspective, the iterative steps of finding the cluster centroids
and cluster assignment in K-means are equivalent to solving a bi-
nary constrained matrix factorization problem [4, 5] by alternating
optimization. Due to the non-convex matrix factorization model and
binary constraint, the iterates of K-means are likely to be stuck in
an unsatisfactory local point and are sensitive to the choice of initial
points [6]. On the other hand, the K-means overlooks the inherent
low-rank structure and prior information which are usually owned by
high-dimensional real data. Therefore, various dimension-reduction
techniques such as principal component analysis (PCA), spectral
clustering [7], non-negative matrix factorization (NMF) [8, 9] and
deep neural networks [10, 11] are proposed for improving data clus-
tering performance. However, these methods are merely used as a
preprocessing stage to find a low-dimensional data representation,
and the K-means is still used for clustering the dimension-reduced
data. Thus, the intrinsic drawback of the K-means caused by the
non-convex and discrete nature of data clustering is not addressed.

Recently, as an variant of NMF, the orthogonal NMF (ONMF)
model has been considered for data clustering [12–18]. The ONMF
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model imposes an additional orthogonality constraint on one of the
factor matrices in NMF. It turns out that, like the K-means, the or-
thogonally constrained factor matrix functions the same as an indica-
tor matrix that shows how the data samples are assigned to different
clusters [12, 16]. Therefore, the ONMF model can be regarded as a
continuous formulation (which has no discrete constraint but is still
non-convex) of K-means. Studies on various data mining tasks have
found that the ONMF model can outperform the K-means and NMF
based clustering methods [13, 15–20].

The ONMF model is challenging to solve. Many of the existing
ONMF algorithms extend upon the classical multiplicative rule [8] to
accommodate the additional orthogonality constraint. For example,
reference [12] used a penalty approach for fulfilling the orthogonal-
ity constraint followed by applying the multiplicative rule. The au-
thors of [14] derived the multiplicative rule directly using the gradi-
ent vector in Stiefel manifold. Besides, the work [16] employed the
augmented Lagrangian method to deal with the non-negative con-
straint and applied the gradient projection method for an orthogo-
nally constrained subproblem. Reference [15] proposed a hierarchi-
cal alternating least squares method that updates the row vectors of
the factor matrix one by one subject to orthogonality constraints with
the other rows. Reference [17] solves a sequence of non-negative
PCA problems for finding good candidates for the ONMF model.
The procedure however is computationally inefficient.

In this paper, we propose a new optimization framework, which
we call the sequential non-convex penalty (SNCP) method, for han-
dling the ONMF problem. The first ingredient of the SNCP method
is to equivalently reformulate the matrix orthogonality constraint
as a set of squared `1-norm-minus-`2-norm equality constraints.
The second ingredient is to apply the penalty method [21] which
adds these non-convex smooth constraints as penalty terms in the
objective function, leaving only simple convex constraints. Then,
the proximal alternating linearized minimization (PALM) method
in [22] is employed to compute a stationary point of the penalized
non-convex optimization problem. In addition, we study analytical
conditions for which the proposed SNCP method can yield a feasi-
ble stationary point to the reformulated ONMF problem. Numerical
results based on synthetic and real datasets show that the proposed
SNCP method outperforms existing ONMF methods.

2. CLUSTERING AND ORTHOGONAL NMF
Let X ∈ RM×N+ be a non-negative data matrix that contains N data
samples, and each of the samples has M features. The task of data
clustering is to assign the N data samples into a predefined number
of K clusters in the sense that the samples belonging to one cluster
are close to each other based on certain distance metric. The most
popular setting is to consider the Euclidean distance as the distance
metric and the use of the K-means for data clustering.
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It is known [4, 5] that, from an optimization point of view, the
K-means can be interpreted as an alternating optimization algorithm
applied to the following matrix factorization problem

min
W,H

‖X−WH‖2F , (1a)

s.t. ‖hj‖1 = 1, [H]ij ∈ {0, 1}, ∀i ∈ K, j ∈ N , (1b)
W ≥ 0, H ≥ 0, (1c)

where K , {1, . . . ,K}, N , {1, . . . , N}, ‖ · ‖F and ‖ · ‖1 are
the matrix Frobenius norm and vector 1-norm, respectively, [H]ij is
the (i, j)th entry of H, and W ≥ 0 (resp. H ≥ 0) stands for that
all elements of W (resp. H) are non-negative. Here, columns of
W ∈ RM×K represent centroids of the K clusters. The matrix

H =
[
h1, . . . ,hN

]
=
[
h̃1, . . . , h̃K

]T
∈ RK×N , (2)

indicates the cluster assignment of samples. Specifically, under the
clustering constraint (1b), each column of H has only one non-zero
element; in particular, [H]ij = 1 if the jth sample is uniquely as-
signed to cluster i, and [H]ij = 0 otherwise. One can see from (1)
that, when W is given, the optimal H is obtained by assigning each
sample to the cluster that has the nearest centroid, and when H is
given, the optimal W is given by the centroids of K clusters. The
two steps are exactly the well-known K-means algorithm. However,
due to the non-convex binary constraint (1b), the K-means is sen-
sitive to the initial conditions and may not always yield satisfactory
clustering performance. Therefore, there have been efforts to finding
a better initial point for the K-means; see, e.g., the K-means++ [6].

The orthogonal NMF (ONMF) model proposed in [12] can pro-
vide better clustering performance over the K-means. In particular,
the ONMF problem is given by

min
W,H

‖X−WH‖2F (3a)

s.t.W ≥ 0,H ≥ 0, (3b)

HHT = IK , (3c)

where IK is the K by K identity matrix. It has been shown [12, 16]
that the ONMF model (3) is closely related to the K-means problem
(1). Specifically, the orthogonality constraint HHT = IK , together
with the non-negativity constraint H ≥ 0, enforce each column of H
to have at most one non-zero entry. Thus, matrix H in (3) functions
similarly as that in (1) and indicates the cluster assignment of data
samples. Nevertheless, different from (1), the non-zero entries of
H in (3) are not limited to be one but can be scaled. Owing to the
two facts, the ONMF model may outperform the K-means and other
clustering methods that rely on the vanilla NMF model [5, 9, 16].

However, due to the orthogonality constraint, the ONMF prob-
lem (3) is challenging to solve. Unlike the existing methods [12,14–
16] which directly deal with the orthogonality constraint (3c), we
present a novel problem reformulation of (3) and propose an SNCP
method that is not only amenable to efficient computation but also
able to provide promising clustering performance.

3. PROPOSED METHOD
3.1. Problem Reformulation
As mentioned, the orthogonality constraint (3c) and the non-negative
constraint (3b) imply that each column of H has at most one non-
zero element. Since any vector x ∈ Rn has at most one non-zero
entry if and only if ‖x‖1 = ‖x‖2, the constraint set (3c) and (3b)

for H is equivalent to the following setH ∈ RK×N
∣∣∣∣ H ≥ 0,

‖h̃i‖2 = 1, i ∈ K,
‖hj‖1 = ‖hj‖2, j ∈ N

 . (4)

Firstly, under H ≥ 0, ‖hj‖1 = ‖hj‖2, j ∈ N are the same as

(1Thj)
2 = ‖hj‖22, ∀j ∈ N , (5)

where 1 is the all-one vector. Secondly, note that the condition
‖h̃i‖2 = 1, i ∈ K, is not intrinsic to the data clustering task.
In essence, both H and QH, where Q ≥ 0 is a diagonal ma-
trix, indicate the same cluster assignment, and both (W,H) and
(WQ−1,QH) have the same objective values in (1a). Therefore,
without loss of the clustering performance, we replace ‖h̃i‖2 =
1, i ∈ K, by

‖h̃i‖2 ≤ 1, ∀i ∈ K. (6)

By combing (4), (5) and (6), we have the following problem formu-
lation for data clustering:

min
W,H

‖X−WH‖2F (7a)

s.t. (1Thj)
2 = ‖hj‖22, j ∈ N . (7b)

‖h̃i‖2 ≤ 1, i ∈ K, (7c)
W ≥ 0,H ≥ 0. (7d)

Problem (7) is still difficult to solve. In particular, the constraints
in (7b) are non-convex. Moreover, constraints in (7b) and in (7c)
couple elements of H across rows and across columns, respectively.
This makes it difficult to apply some decomposition methods for
dealing with large-scale problems.

3.2. Proposed SNCP Method
To overcome the aforementioned issues, we propose the following
penalized formulation

min
W,H

‖X−WH‖2F +
ρ

2

N∑
j=1

(
(1Thj)

2 − ‖hj‖22
)

(8a)

s.t. ‖h̃i‖2 ≤ 1, i ∈ K, (8b)
W ≥ 0,H ≥ 0, (8c)

where ρ > 0 is a penalty parameter. Notice that in (8), the non-
convex constraints in (7b) are penalized in the objective function,
which leads to a simple convex constraint set for problem (8). As
will be introduced shortly, by applying the PALM method [22], one
is able to solve (8) efficiently.

Here, let us analyze the conditions for which the penalized for-
mulation (8) can yield a feasible solution to problem (7). We first
assume that one is able to achieve a local minimum solution of the
penalized problem (8).

Proposition 1 For any ρ > 0, if (W?,H?) is a local minimizer of
problem (8), then H? satisfies (7b).

We omit the proof here. The idea of the proof is based on the
observation that for any H that is not feasible to (7b), the objec-
tive value in (8a) at ( 1

α
W?, αH?) is strictly increasing in α > 0.

While Proposition 1 shows that any local minimum solution of (8)
is feasible to (7), problem (8) is non-convex and therefore a local
minimum solution cannot be computed in general. Instead, most of
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the non-convex optimization algorithms can only yield a stationary
point [23, (1.3.3)] under proper conditions [24].

Let us denote (Wρ,Hρ) as a stationary point of (8), and assume
(Wρ,Hρ) → (W∞,H∞) when ρ → ∞. By assuming that the
Mangasarian-Fromovitz constraint qualification (MFCQ) [23, Sec.
3.2] holds for (7) at (W∞,H∞), we have the following theorem.

Theorem 1 Assume that (Wρ,Hρ) is bounded and it has a limit
point (W∞,H∞) when ρ → ∞. Then, (a) (W∞,H∞) sat-
isfies (7b); (b) if the MFCQ holds for (7) at (W∞,H∞), then
(W∞,H∞) is a stationary point of problem (7).

The proof is omitted here and will be reported in future publi-
cations. Theorem 1 implies that, by gradually increasing the penalty
parameter ρ, any stationary point of the penalized problem (8) will
eventually be feasible to (7) and it will also be a stationary point
of (7) if the MFCQ holds. We should emphasize that Theorem 1 is
different from the known results of the penalty methods [21, 24–27]
where they all assume that either a local minimum or a global mini-
mum of the penalized problem can be obtained.

Motivated by Theorem 1, we propose the SNCP method in Algo-
rithm 1 for solving problem (7). In particular, we solve a sequence
of the penalized problem (8) to a stationary point, with increased
value of the penalty parameter ρ. To speed up the convergence, the
obtained stationary point is used as the initial point for solving (8) in
the next iteration.

Algorithm 1 Proposed SNCP method for solving (7).

1: Set r = 0, and given a parameter γ > 1, and initial values of
ρ > 0 and (W(0),H(0)).

2: repeat
3: Obtain a stationary point (W(r+1),H(r+1)) of problem

(8), e.g., by the PALM algorithm (Algorithm 2) with
(W(r),H(r)) being the initial point.

4: Update ρ = γρ.
5: Set r = r + 1.
6: until a predefined stopping criteria is satisfied.

3.3. Obtaining a Stationary Point of (8) by PALM
We employ the PALM method [22] to obtain a stationary point of
problem (8). When applied to (8), the PALM involves performing
two gradient projection steps for H and W, respectively. Let us
denote Fρ(W,H) , ‖X−WH‖2F+ ρ

2

∑N
j=1

(
(1Thj)

2−‖hj‖22
)
.

At each iteration k of the PALM method, the gradient projection step
for variable H is given by

Hk+1 = argmin
H
‖H−Bk‖2F

s.t.H ≥ 0, ‖h̃i‖2 ≤ 1, i ∈ K, (11)

where Bk , Hk − 1
tk
∇HFρ(W

k,Hk) and tk > 0 is a step size.
Note that both the objective function and the constraint set of (11)
are separable with respect to the rows of H. Thus, update of H can
be decomposed asK subproblems as in (9) (see Algorithm 2), where
(b̃ki )

T is the ith row of Bk. The following proposition shows that
(9) admits simple solutions:
Proposition 2 Consider the following problem

min
x∈Rn

1

2
‖x− b‖22 (12a)

s.t. x ≥ 0, ‖x‖2 ≤ 1. (12b)

where b = [b1, . . . , bn]
T ∈ Rn is given. Denote x? = [x?1, . . . , x

?
n]
T

as an optimal solution to (12).

Algorithm 2 PALM for solving (8).

1: Set k = 0,W0 = W(r), H0 = H(r).
2: repeat
3: Update h̃i, i ∈ K, and W by

h̃k+1
i = arg min

h̃i≥0, ‖h̃i‖2≤1
‖h̃i − b̃ki ‖22 (9)

Wk+1 = max
{
Wk − 1

ck
∇WFρ(W

k,Hk+1), 0
}
, (10)

4: Set k = k + 1,
5: until a predefined stopping criteria is satisfied.

(a) If b ≤ 0, then x? = 0, and if b > 0, then x? = b
max{‖b‖2,1}

.

(b) If b � 0 and b ≯ 0, partition b as b = [bT+,b
T
−]
T without loss

of generality, where b+ > 0 and b− ≤ 0. Then, x?− = 0 and
x?+ =

b+

max{‖b+‖2,1}
.

The proof is easy and is not presented. Analogously, as shown in
(10), the update of W is also simple, where ck > 0 is a step size.
Therefore, the PALM method in Algorithm 2 is efficiently imple-
mentable. The convergence conditions of the PALM algorithm (Al-
gorithm 2) has been analyzed in [22]. According to [22, Theorem
1], given proper values of ck and tk [22, (3.3), (3.4)] and given the
fact that Fρ(W,H) is a coercive function, the PALM algorithm can
yield a bounded stationary point of problem (8) as k →∞.

4. NUMERICAL RESULTS AND DISCUSSIONS
We examine the clustering performance of the proposed SNCP
method against seven existing clustering methods, namely, K-means
(KM), K-means++ [6], NMF followed by K-means (NMF+KM) [5],
DTPP [12], ONP-MF [16], ONMF-S [14] and HALS [15]. The
purity [28], adjusted Rand index (ARI) [29] and clustering accuracy
(ACC) [30] are adopted for performance evaluation.
4.1. Performance with Synthetic Data
The synthetic data is based on the linear model X = WH + E
where E ∈ RM×N denotes the measurement noise. The signal to
noise ratio (SNR) is defined as 10 log10(‖WH‖2F /‖E‖2F ). We fol-
low the same procedure as in [5] to generate W, E and the cluster
assignment matrix H, with M = 2000, N = 1000 and K = 10
(10 clusters). The number of data samples in the 10 clusters are
117, 62, 36, 124, 15, 24, 119, 43, 122 and 338, respectively. Like
[5], 5% of the data samples are replaced by the same number of
randomly generated outliers.

Algorithm convergence: Let us first examine the converge be-
havior of the proposed SNCP method. We define the following two
terms for accessing the convergence and satisfaction of the orthogo-
nality constraint

Normalized Residual =
‖W(r) −W(r−1)‖F
‖W(r−1)‖F

+
‖H(r) −H(r−1)‖F
‖H(r−1)‖F

,

Normalized Orthogonality =
‖Q(r)H(r)(Q(r)H(r))T − IK‖F

K2
,

where Q(r) is a diagonal matrix such that rows of Q(r)H(r)

have unit 2-norm. The stopping condition of Algorithm 2 is
the normalized residual of (Wk,Hk) less than ε, where ε ∈
{10−1, 10−2, 10−3}. The initial penalty parameter ρ is set to
10−8 and the parameter γ for increasing ρ is set to 1.1. One can see
from Fig. 1 that the proposed SNCP method indeed converges and

5578



(b) (a) 

Fig. 1: Convergence curves of normalized residual and orthogonality
achieved by SNCP on the synthetic data with SNR = −1 dB.
Table 1: Clustering performance (%) on the synthetic data for dif-
ferent values of SNR.

SNR (dB) -5 -3 -1 1 3 5

Purity

KM 68.7 75.9 79.2 78.1 77.7 76.1
KM++ 75.9 79.7 79.7 76.9 78.5 76.7

NMF+KM 91.1 90.2 91.2 92.5 93.3 93.3
DTPP 90.3 91.7 92.0 92.6 92.5 93.3

ONP-MF 72.0 75.2 81.6 81.1 81.8 83.7
ONMF-S 86.9 87.9 81.6 91.2 91.9 92.0

HALS 90.8 92.5 92.5 93.0 93.0 93.4
SNCP 92.0 92.4 92.6 93.0 93.7 93.8

ARI

KM 57.0 65.8 73.8 73.6 73.4 68.7
KM++ 57.7 60.0 61.8 64.8 68.2 69.8

NMF+KM 90.6 90.4 90.9 91.5 91.9 92.0
DTPP 78.8 84.3 84.5 87.1 85.0 89.5

ONP-MF 42.6 56.9 65.1 65.8 68.2 70.7
ONMF-S 71.2 73.4 73.6 77.6 78.4 78.6

HALS 67.9 80.3 85.2 87.2 87.0 86.2
SNCP 91.1 91.3 91.5 91.6 91.9 92.0

ACC

KM 63.4 69.8 74.5 74.3 75.6 75.9
KM++ 64.8 68.1 68.7 69.8 71.7 73.8

NMF+KM 89.2 88.5 89.4 90.8 91.4 91.4
DTPP 82.6 86.9 87.1 89.4 88.1 91.6

ONP-MF 57.4 64.5 75.4 75.0 75.1 78.4
ONMF-S 77.8 79.1 79.9 82.5 83.3 83.7

HALS 76.2 84.9 88.5 89.6 89.4 89.4
SNCP 91.5 91.7 92.1 92.7 93.3 93.6

satisfies well the orthogonality constraint. Moreover, if the stopping
criterion for the inner PALM is more stringent, then the SNCP takes
less iterations to converge.

Clustering quality: Table 1 lists the clustering performance of
the methods under test on the synthetic data with different SNR val-
ues. All results are obtained by averaging over 20 simulation tri-
als. In each trial, all methods use the same randomly generated
initial point. For the proposed SNCP method, the stopping condi-
tion is when both the normalized residual and orthogonality are less
than 2 × 10−6, and ε = 3 × 10−3 for the PALM. First of all, one
can observe that K-means++ does not perform better than the K-
means due to the presence of outliers. The NMF based methods
(i.e., NMF+KM, DTPP, ONP-MF, ONMF-S, HALS, and proposed
SNCP) significantly outperform the K-means and K-means++. Nev-
ertheless, one can see from Table 1 that the proposed SNCP method
consistently yield the best clustering performance, especially for the
clustering accuracy. Among all the other methods, the NMF+KM
performs most closely with the proposed SNCP, which echos the
result that dimension reduction can greatly improve the clustering
performance.

Clustering stability: We also evaluate the stability of the clus-
tering methods against different initial points. In particular, we adopt

（a) ONP-MF

(c) HALS (d) SNCP

（b) K-Means++

CC:0.9986

CC=0.9802 CC=0.9848

CC=0.9958

CC=0.9942 CC=0.9986

CC=0.9290 CC=0.9848

Fig. 2: The consensus map of clustering results for SNR = -3. Here
CC stands for the cophenetic correlation coefficient.

Table 2: Clustering performance (%) on 6 real datasets.

Data 1 2 3 4 5 6

Purity

DTPP 90.2 96.2 97.3 96.7 92.5 91.4
ONMF-S 93.1 79.7 96.8 97.9 91.4 90.2
ONP-MF 98.1 97.2 91.9 98.5 92.3 89.1

HALS 97.2 94.2 97.1 98.2 92.8 91.9
SNCP 98.3 96.3 97.5 98.8 92.4 94.3

ARI

DTPP 88.0 66.1 92.1 90.7 31.2 41.2
ONMF-S 87.5 60.0 91.1 95.9 32.5 41.5
ONP-MF 84.2 72.1 91.0 96.8 29.9 57.1

HALS 93.2 63.0 91.7 96.1 32.5 42.7
SNCP 93.6 69.9 93.3 97.4 32.6 48.7

ACC

DTPP 80.6 71.0 89.1 90.5 52.6 50.8
ONMF-S 88.6 68.1 89.5 98.0 56.1 55.1
ONP-MF 91.3 79.3 91.4 98.5 53.2 65.8

HALS 90.7 66.9 89.2 98.2 53.1 54.5
SNCP 94.1 80.9 93.1 98.8 58.0 58.8

the consensus map and cophenetic correlation (CC) coefficient [31]
to measure the stability. Roughly speaking, in the consensus map,
the (i, j)th entry will be close to 1 if sample i and sample j are
consistently assigned to the same cluster even under different initial
conditions. The CC coefficient (between 0 and 1) is used to quantize
the overall quality of the consensus map. Fig. 2 shows the results
for SNR = −3 dB, and one can see that the proposed SNCP method
can give consistent clustering results except for small-sized clusters.

4.2. Performance with Real Dataset
We consider the real dataset TDT2 corpus [30] which consists of
10212 on-topic documents in total with 56 semantic categories. We
extract 6 subsets each of which contains 10 randomly picked cat-
egories (K = 10). Table 2 displays the best clustering result of
each method obtained from 10 different initial points. As seen, in
most of the cases, the SNCP method provides improved clustering
performance over the existing ONMF based clustering methods. In-
terestingly, it is observed that the ONP-MF in [16] performs best for
the 6th dataset in terms of ARI and ACC.

In summary, in this paper we have proposed the SNCP method
for data clustering. The numerical results presented above have
shown that the proposed method mostly outperforms the existing
seven methods under test for either synthetic data and the real
dataset in [30]. Due to limited space, the current paper cannot
present results about computational complexity and computation
time. Experimental experience indicates that the proposed SNCP
method is competitive and more efficient when compared to the
other ONMF based methods.
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