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ABSTRACT

Sensing matrix can be designed with low coherence with the

measurement matrix to improve the sparse signal recovery

performance of greedy algorithms. However, most of the

sensing matrix design algorithms are computationally expen-

sive due to large number of iterations. This paper proposes

an iteration-free sensing matrix design algorithm for multiple

measurement vectors (MMV) compressive sensing. Specifi-

cally, sensing matrix is designed in the sense of the local cu-

mulative cross-coherence (LCCC) of the sensing matrix with

respect to the measurement matrix when the number of M-

MV is sufficient and the sparse signals are of full rank. Ex-

periment results verify the effectiveness of the proposed algo-

rithm in terms of improving the sparse signal recovery perfor-

mance of greedy algorithms.

Index Terms— Sparse signal recovery, multiple measure-

ment vectors, sensing matrix design, simultaneous orthogonal

matching pursuit

1. INTRODUCTION

With multiple measurement vectors (MMV) along time in-

stance, the measurement equation of compressive sensing (C-

S) can be formulated as

yl = Φxl + nl, l = 1, 2, · · · , L (1)

where Φ ∈ R
M×N (M < N) is the measurement matrix,

and xl ∈ R
N×1, yl ∈ R

M×1 and nl ∈ R
M×1 are the vectors

of signal, measurement and noise, respectively. Note that (1)

can be compactly represented in the form of matrix

Y = ΦX +N (2)

where X = [x1,x2, · · · ,xL] is the jointly sparse sig-

nal, Y = [y
1
,y

2
, · · · ,yL] is the measurement, N =

[n1,n2, · · · ,nL] is the measurement noise. In the case of
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MMV-CS, the vectors {xl}
L
l=1

share the same sparse pattern

which means that the matrix X only has a few of rows with

non-zero entries.

Usually, the recovery of the sparse signal from its multiple

linear measurements can be realized by solving the following

optimization problem

min
X∈RN×L

‖Y −ΦX‖2F + λR(X) (3)

where ‖·‖F indicates the Frobenius norm, R(·) is an operator

that gives the number of non-zero rows of the input signal

X . The first term in (3) is the data fidelity term and second

one forces the recovered signal to be sparse. The λ > 0 is a

regularization parameter which is the trade-off between data

fitting and the sparsity of signal.

Various methodologies have been proposed to address the

sparse recovery problem, such as simultaneous orthogonal

matching pursuit (SOMP) [1–3], Reduce MMV and boost

(ReMbo) [4], mixed norm approach [5], rank aware order

recursive matching pursuit (RA-ORMP) [6]. Among these

methods, the SOMP algorithm has received attention due to

its simplicity, low computational complexity and excellent re-

covery performance. The essential of greedy algorithms is to

estimate the support which contains the indexes of the non-

zero rows in the sparse signal. It has been proved that the

error of the estimated sparse signal achieves the Cramer-Rao

bound as long as the support is recovered correctly [1].

The SOMP algorithm recovers the support according to

the absolute inner product of the residual signal and each col-

umn of Φ [1,3]. The methods of designing measurement ma-

trix with low coherence between different columns are de-

veloped in [1, 7–9]. Subsequently, the sensing matrix Ψ ∈
R

M×N is proposed for support recovery in greedy algorithm-

s and hard thresholding algorithm [10], where Ψ, instead of

Φ, is exploited for sparse recovery. It is proved that low co-

herence between Ψ and Φ can improve the support recovery

accuracy. Based on this conclusion, both Ψ and Φ are con-

structed in [10, 11]. However, the performance in terms of

sparsity level is not generally satisfactory, and there is a great

gap from the upper bound provided in [12].
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In this paper, an iteration-free sensing matrix design algo-

rithm for MMV-CS is proposed to improve the sparsity level.

In comparison with other sensing matrix design criteria, the

coherency between Ψ and Φ , as well as that between Ψ and

Y are considered. This is because the measurement matrix Y

is with the support information, since they are linear combi-

nations of the measurement columns indexed by the support.

Therefore, the proposed method is able to improve the ac-

curacy of the support recovery, which in turn enhances the

performance of sparse signal recovery. The proposed method

can be described by a quadratic optimization problem, and

the closed form solution to this problem is provided. Further-

more, numerical simulations have been conducted to illustrate

the performance of the method.

2. COHERENCE MEASUREMENT OF

MEASUREMENT MATRIX AND SENSING MATRIX

A generalized parameter to address the coherence of measure-

ment matrices is the cumulative coherence [3]. The kth cumu-

lative coherence is defined as

µc(k,Φ) = max
|Γ|=k

∑

i,j=1,2,··· ,N,i/∈Γ,j∈Γ

∣

∣

∣Φ
T
.iΦ.j

∣

∣

∣. (4)

It is proved in [1] that µc(k,Φ) + µc(k − 1,Φ) < 1 can

guarantee the success of both OMP and basis pursuit (BP)

algorithms. Due to the significance of the correlation prop-

erty, many works have been done to design the measurement

matrix with small cumulative coherence. In [13], a measure-

ment matrix with low coherence is constructed by shrinkage

method. In [14], a gradient based optimization method is pro-

posed to determine the measurement matrix. Other projec-

tion matrix or measurement matrix design methods have been

suggested in [15,16]. However, the measurement matrix is re-

dundant which makes it impossible to design a measurement

matrix with zero coherence coefficient or with all columns

orthogonal.

In [10], the concept of sensing matrix Ψ ∈ R
M×N is

proposed for support recovery in OMP and hard threshold-

ing algorithms. The purpose of designing sensing matrix in

CS is to reduce the coherence of sensing and measurement

matrices, which can improve the recovery performance. The

process of sparse recovery by using sensing matrix can be ex-

pressed as

X̂ = R(Y ,Ψ,Φ, · · · ). (5)

A parameter termed as the cumulative cross-coherence (CCC)

is proposed to measure the coherence between Φ and Ψ [10],

defined as

µ̃c(k,Ψ,Φ) = max
i

max
|J|=k,i/∈J

∑

j∈J

∣

∣

∣Ψ
T
.iΦ.j

∣

∣

∣. (6)

In [10], a sufficient condition for the support recovery with

the OMP algorithm is proposed. It has been proved that the

smaller CCC between Ψ and Φ results in higher accuracy of

support recovery. Based on this property, the sensing matrices

are constructed in [10, 11].

By exploiting the received data to determine the support, a

re-weighted algorithm for data-dependent sensing matrix de-

sign is proposed in [17], in which the local cumulative cross-

coherence (LCCC) is defined

µ̂c(k,Ψ,ΦΓ) = max
|J|=k,J⊆Γ

max
i/∈J

∑

j∈J

∣

∣

∣Ψ
T
.iΦ.j

∣

∣

∣ (7)

where Γ is the support of sparse signal.

It can be seen from (7) that µ̂c(k,Ψ,ΦΓ) represents the

worst case coherence between the columns of the sensing ma-

trix and measurement columns indexed by the support Γ. In

other words, µ̂c(k,Ψ,ΦΓ) describes the local coherence be-

tween the sensing matrix and the measurement matrix, while

µ̃c(k,Ψ,Φ) describes the global coherence of the sensing

matrix with the measurement matrix.

3. ADAPTIVE SENSING MATRIX DESIGN

3.1. Sensing Matrix Design with Sufficient MMV

For sufficient multiple measurement vectors, i.e., L ≥ M , the

recovered signal can be expressed as

X̂i. =Ψ
T
.iY = Ψ

T
.i (ΦX +N) = Ψ

T
.iΦX +Ψ

T
.iN

=Ψ
T
.i

[

N
∑

j=1

Φ.jX(j, 1),
N
∑

j=1

Φ.jX(j, 2), · · · ,

N
∑

j=1

Φ.jX(j, L)

]

+Ψ
T
.iN

=

[

Ψ
T
.iΦ.iX(i, 1) +Ψ

T
.i

N
∑

i6=j,j=1

Φ.jX(j, 1), · · · ,

Ψ
T
.iΦ.iX(i, L) +Ψ

T
.i

N
∑

i6=j,j=1

Φ.jX(j, L)

]

+Ψ
T
.iN .

(8)

It follows from (8) that in order to exactly recover the jointly

sparse signalX , the termsΨT
.iΦ.iX(i, 1),· · · ,ΨT

.iΦ.iX(i, L)
for i = 1, 2, · · · , N should be kept distortionless forΨT

.iΦ.i =
1, while other terms should be minimized. Given the mea-

surements Y , the sensing matrix can be designed as follows

min
Ψ.i∈RM×1

∥

∥

∥Ψ
T
.iY

∥

∥

∥

2

2

s.t. Ψ
T
.iΦ.i = 1.

(9)

The optimization problem in (9) is a quadratic programming

problem with a linear constraint. Its closed form solution is

Ψ.i =
R−1

Φ.i

Φ
T
.iR

−1
Φ.i

(10)
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where R = 1

LY Y T . To ensure that Y is with full row rank,

the sample size needs to be no less than measurement size,

i.e., L ≥ M .

Proposition 1 For the SOMP algorithm, the sensing matrix

Ψ designed by (10) provides a decreased LCCC and the

bound is

0 ≤ µ̂c(K,Ψ,ΦΓ) ≤ µ̃c(K,Ψ,Φ). (11)

Proof : For brevity, only the proof of Proposition 1 in the

noisy case is provided, since the proof in the noiseless case

can be derived with the similar procedure. For a given vector,

the minimization of (9) is equivalent to the form of the ℓ2-

norm minimization, therefore, the objective function can be

rewritten as

∥

∥

∥
Ψ

T
·iY

∥

∥

∥

2

=
∥

∥

∥
Ψ

T
·i

(

ΦΓX
Γ +N

)∥

∥

∥

2

≤
∥

∥

∥Ψ
T
·iΦΓX

Γ

∥

∥

∥

2

+
∥

∥

∥Ψ
T
·iN

∥

∥

∥

2

≤
∥

∥

∥Ψ
T
·iΦΓ

∥

∥

∥

2

∥

∥

∥X
Γ

∥

∥

∥

F
+

∥

∥

∥Ψ
T
·i

∥

∥

∥

2

‖N‖F

= σs

∥

∥

∥Ψ
T
·iΦΓ

∥

∥

∥

2

+ σn

≤ σs

∥

∥

∥Ψ
T
·iΦΓ

∥

∥

∥

1

+ σn

= σs





∑

j∈Γ

∣

∣

∣Ψ
T
·iΦ·j

∣

∣

∣



+ σn

(12)

where i ∈ Γc, ‖XΓ‖F = σs and ‖N‖F = σn. In the

second inequation of (12), ‖Ψ·i‖2 = 1 is applied. There-

fore, the minimization of (9) is equivalent to the minimiza-

tion of f(i) =
∑

j∈Γ
|ΨT

·iΦ·j |. Refer to the definition of

µ̂c(K,Ψ,ΦΓ) in (7), it can be rewritten as follows

µ̂c(K,Ψ,ΦΓ) = max
i∈Γc





∑

j∈Γ

∣

∣

∣Ψ
T
·iΦ·j

∣

∣

∣



 = max
i∈Γc

f(i). (13)

As f(i) for any i ∈ Γc is minimized by the optimization prob-

lem (9), it suggests that µ̂c(K,Ψ,ΦΓ) gets decreased.

Next, we consider the lower bound of the LCCC. Accord-

ing to (12), one has

σs

∥

∥

∥Ψ
T
·iΦΓ

∥

∥

∥

2

+ σn ≤ σs





∑

j∈Γ

∣

∣

∣Ψ
T
·iΦ·j

∣

∣

∣



 + σn. (14)

Based on the concept of subspace, it is easy to understand

that the vector Ψ.i lies in the null space of ΦΓ such that
∑

j∈Γ
|ΨT

·iΦ·j | gets the lower bound. Therefore, the inner

product of Ψ.i and Φ.j for j ∈ Γ is 0, which means the low-

er bound of LCCC is decreased to 0. Furthermore, the upper

bound of µ̂c(K,Φ,ΨΓ) can be derived as follows

µ̂c(K,Φ,ΨΓ) = max
i∈Γc

∑

j∈Γ

∣

∣

∣Ψ
T
.iΦ.j

∣

∣

∣

= max
i∈Γc

∥

∥

∥Ψ
T
.iΦΓ

∥

∥

∥

1

=
∥

∥

∥
Ψ

T
ΓcΦΓ

∥

∥

∥

∞,∞

≤ max
i∈Jc

∑

j∈J,|J|=K

∣

∣

∣Ψ
T
.iΦ.j

∣

∣

∣

= µ̃c(K,Φ,Ψ)

(15)

where ‖ · ‖∞,∞ is the maximum ℓ1-norm of the row of a

matrix, J is an arbitrary subset of Ω = {1, 2, · · · , N} with

|J | = K . From (15) it can be seen that the upper bound of

µ̂c(K,Φ,ΨΓ) is µ̃c(K,Φ,Ψ). Therefore, the bound of LC-

CC is provided as (11).

Remarks: 1) The subspace method is presented in the

proof of Proposition 1. The Ψi lies in the null space, which is

orthogonal to the signal space that consists of the columns of

measurement matrix Φ indexed by the support set Γ. Accord-

ing to the definition of the LCCC, it is decreased by the ob-

tained sensing matrix. 2) In [17], it has been proved that the

smaller LCCC is, the better performance of sparse recovery

can be achieved. Therefore, Proposition 1 indicates that the

designed sensing matrix is able to improve the performance

of sparse recovery.

20 40 60 80 100
Sparsity of signal (K)
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RW
Proposed

Fig. 1: LCCC versus sparsity of signal with SNR = 20dB
and L = 500.

4. NUMERICAL SIMULATIONS

In order to validate the effectiveness of the proposed method,

numerical simulations have been conducted. The simulation
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Fig. 2: Percentage of successful recovery versus sparsity of

signal with SNR = 20dB and L = 500.

settings are provided as follows. The sparse signal is gen-

erated by Gaussian distribution with mean one and variance

0.1. The sparsity of the signal, i.e., K , varies from 5 to 100.

The sizes of the sensing matrix and measurement matrix are

both 128 × 256. The entries of the measurement matrix are

drawn from Gaussian distribution with zero mean and unit

variance. In order to evaluate the performances of the pro-

posed approach, 500 independent trials are carried out at each

specific case. The percentage of successful support recovery

and the root mean square error (RMSE) of recovered signal

are both calculated. For the purpose of comparison, the Alter-

nating Projection (AP) algorithm [10] and Re-weighted (RW)

algorithm [17] for sensing matrix design are performed. The

conventional approach Ψ = Φ is also conducted.

When SNR = 20dB and L = 500, the LCCC versus s-

parsity of signal is shown in Fig.1. As K > 30, the proposed

method exhibits excellent performance in terms of minimiz-

ing LCCC, which ensures the support recovery for the SOMP

algorithm.

Under the same simulation conditions, the performance of

support recovery is evaluated and the corresponding result is

depicted in Fig.2. It can be seen that the proposed method can

correctly recovery the support with high probability particu-

larly when K reaches 70.

The RMSEs for different sparsities of the signals are eval-

uated, and the simulation results are shown in Fig.3. It can be

seen that all the three methods achieve excellent RMSE when

the sparsity of the signal is less than 20. However, the AP and

RW algorithms cannot work successfully when K increases

to 40. This is because the SOMP algorithm cannot select the

correct indices of the measurement matrix due to the coher-

ence among the columns of the measurement matrix. The pro-

posed method exhibits superior performance when K ≤ 70
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Fig. 3: RMSE versus sparsity of signal with SNR = 20dB
and L = 500.

since it is able to provide smaller LCCC between Ψ and Φ

than the other two schemes.

5. CONCLUSIONS

In this paper, an iteration-free sensing matrix design algorith-

m for MMV-CS is proposed. In order to improve the perfor-

mance of sparse signal recovery, the coherency of Ψ and Φ

as well as that of Ψ and Y are exploited. Comparing with

the existing methods of sensing matrix design, the proposed

algorithm is iteration-free and is able to further enhance the

recovery performance. Simulation results confirm the superi-

ority of the proposed approach.

6. REFERENCES

[1] J. A. Tropp, “Greed is good: algorithmic results for

sparse approximation,” IEEE Trans. Inf. Theory, vol.

50, no. 10, pp. 2231–2242, Oct. 2004.

[2] J. Chen and X. Huo, “Theoretical results on sparse rep-

resentations of multiple-measurement vectors,” IEEE

Trans. Signal Process., vol. 54, no. 12, pp. 4634–4643,

Dec. 2006.

[3] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Algo-

rithms for simultaneous sparse approximation. Part I:

Greedy pursuit,” Signal Process., vol. 86, no. 3, pp.

572–588, Mar. 2006.

[4] M. Mishali and Y. C. Eldar, “Reduce and boost: Re-

covering arbitrary sets of jointly sparse vectors,” IEEE

Trans. Signal Process., vol. 56, no. 10, pp. 4692–4702,

Oct. 2008.

5574



[5] J. A. Tropp, “Algorithms for simultaneous sparse ap-

proximation. Part II: Convex relaxation,” Signal Pro-

cess., vol. 86, no. 3, pp. 589–602, Mar. 2006.

[6] M. E. Davies and Y. C. Eldar, “Rank awareness in joint

sparse recovery,” IEEE Trans. Inf. Theory, vol. 58, no.

2, pp. 1135–1146, Feb. 2012.

[7] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive

greedy approximations,” Constr. Approx., vol. 13, no.

1, pp. 57–98, Mar. 1997.

[8] J. J. Fuchs, “Extension of the pisarenko method to s-

parse linear arrays,” IEEE Trans. Signal Process., vol.

45, no. 10, pp. 2413–2421, Oct. 1997.

[9] D. Donoho and M. Elad, “Optimally sparse representa-

tion in general (non-orthogonal) dictionaries via ℓ1 min-

imization,” P. Natl. Acad. Sci., vol. 100, no. 5, pp. 2197–

2202, Mar. 2003.

[10] K. Schnass and P. Vandergheynst, “Dictionary precon-

ditioning for greedy algorithms,” IEEE Trans. Signal

Process., vol. 56, no. 5, pp. 1994–2002, May. 2008.

[11] B. Li, Y. Shen, and J. Li, “Dictionaries construction us-

ing alternating projection method in compressive sens-

ing,” IEEE Signal Process. Lett., vol. 18, no. 11, pp.

663–666, Nov. 2011.

[12] J. M. Kim, O. K. Lee, and J. C. Ye, “Compressive MU-

SIC: Revisiting the link between compressive sensing

and array signal processing,” IEEE Trans. Inf. Theory,

vol. 58, no. 1, pp. 278–301, Jan. 2012.

[13] M. Elad, “Optimized projections for compressed sens-

ing,” IEEE Trans. Signal Process., vol. 55, no. 12, pp.

5695–5702, Dec. 2007.

[14] V. Abolghasemi, S. Ferdowsi, and S. Sanei, “A gradient-

based alternating minimization approach for optimiza-

tion of the measurement matrix in compressive sensing,”

Signal Process., vol. 92, no. 4, pp. 999–1009, Apr. 2012.

[15] G. Li, Z. Zhu, D. Yang, L. Chang, and H. Bai, “On

projection matrix optimization for compressive sensing

systems,” IEEE Trans. Signal Process., vol. 61, no. 11,

pp. 2887–2898, June. 2013.

[16] W. Chen, M. R. D. Rodrigues, and I. J. Wassell, “Projec-

tion design for statistical compressive sensing: A tight

frame based approach,” IEEE Trans. Signal Process.,

vol. 61, no. 8, pp. 2016–2029, Apr. 2013.

[17] A. Huang, G. Gui, Q. Wan, and A. Mehbodniya, “A re-

weighted algorithm for designing data dependent sens-

ing dictionary,” Int. J. Phys. Sci., vol. 6, no. 3, pp. 386–

390, Feb. 2011.

5575


		2019-03-18T11:14:40-0500
	Preflight Ticket Signature




