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ABSTRACT

In this paper, we consider a general sparse recovery and
blind demodulation model. Different from the ones in the
literature, in our general model, each dictionary atom under-
goes a distinct modulation process; we refer to this as non-
stationary modulation. We also assume that the modulation
matrices live in a known subspace. Through the lifting tech-
nique, the sparse recovery and blind demodulation problem
can be reformulated as a column-wise sparse matrix recovery
problem, and we are able to recover both the sparse source
signal and a cluster of modulation matrices via atomic norm
and the induced `2,1 norm minimizations. Moreover, we show
that the sampling complexity for exact recovery is proportion-
al to the number of degrees of freedom up to log factors in the
noiseless case. We also bound the recovery error in terms of
the norm of the noise when the observation is noisy. Numeri-
cal simulations are conducted to illustrate our results.

Index Terms— Sparse recovery, blind demodulation,
atomic norm minimization, sparse matrix recovery

1. INTRODUCTION

1.1. Motivation

The sparse recovery and blind demodulation problem arises
naturally in a wide range of applications such as self cali-
bration [1] and blind super-resolution [2]. Mathematically,
the system receives y = DAc ∈ CN where D ∈ CN×N ,
A ∈ RN×M (N < M) and c ∈ RM are a diagonal matrix,
the dictionary matrix and the sparse signal coefficient vector,
respectively [3, 4]. The diagonal matrix D performs point-
wise multiplication, also known as modulation in signal pro-
cessing. The goal is to recover both the sparse vector c and
the diagonal modulation matrix D from the observation y. A
is known but the whole system is under-determined.

In this paper, we consider a more general model and al-
low each dictionary atom to undergo a distinct modulation
process. Thus,

y =

M∑
j=1

cjDjaj ∈ CN (1.1)
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where aj is the j-th column of A and most cj are zero due
to the sparsity. We assume only J of cj are non-zero. In
addition, inspired by [5, 6], we assume each diagonal matrix
Dj lives in a known low dimension subspace, that is,

Dj = diag(Bhj) (1.2)

where B ∈ CN×K(N > K) contains the bases of the K
dimension subspace and hj is the unknown coefficient vector.
When there is measurement noise, the observation becomes

y =

M∑
j=1

cjDjaj + n (1.3)

where n is the noise vector. We will recover both Dj and
cj through atomic norm minimization [7], or equivalently the
`2,1 norm minimization. The atomic norm, which promotes
the sparsity with respect to a given dictionary, has been widely
applied in many inverse problems [8, 9].

1.2. Contributions and Related Work

In this paper, we study the general sparse recovery and non-
stationary blind demodulation problem in equation (1.1) and
recover all cj and Dj simultaneously via atomic norm mini-
mization. Specifically, under the assumption that Dj’s diag-
onal entries obey a subspace constraint, we show that the un-
known parameters can be exactly recovered with overwhelm-
ing probability when the observation is noiseless and the re-
quired number of measurement is proportional to the number
of degrees of freedom, O(JK). When the observation is con-
taminated with noise, we establish that the recovery error can
be bounded in terms of the norm of the noise. Particularly,
we consider the random Gaussian dictionary where each entry
of A is sampled independently from a Gaussian distribution
with 0 mean and unit variance.

The majority of the sparse recovery and blind demodula-
tion literatures assume a common modulation process Dj =
D for all dictionary atoms [1, 3, 6]. Specifically, [6] considers
a spikes deconvolution problem whose dictionary consists of
complex sinusoids and [1] studies the self calibration problem
with random Gaussian and Fourier dictionaries when all Dj

are the same. [2] extends the work of [6] to non-stationary
modulation. However, they consider the complex sinusoids
dictionary and their technical development requires a random
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assumption on hj . The random ’sign’ assumption makes it
challenging to develop noisy performance guarantees. In-
spired by [1], [5] studies the deconvolution and demixing
problem but the method requires knowledge of the number
of source signals. More variations of the sparse recovery and
blind demodulation problem with a common D can be found
in [3, 10, 11].

The rest of this paper is organized as follows. In Sec-
tion 2, we recast sparse recovery and blind demodulation to
a column-wise sparse matrix recovery problem. The main
theorems regarding the sampling complexity and noisy error
bound are presented in Section 3. Section 4 and 5 are devoted
to numerical simulations and the conclusion.

2. PROBLEM FORMULATION

According to the signal model in equation (1.1), if BH =
[b′1 b′2 · · · b′N ] ∈ CK×N where b′ ∈ CK , each entry
of y takes the form

y(n) =

M∑
j=1

cjā
H
j enb

′H
n hj

= Tr

enb
′H
n

M∑
j=1

cjhjā
H
j


= 〈

M∑
j=1

cjhjā
H
j , b

′
ne

H
n 〉

:= 〈G, b′ne
H
n 〉

(2.1)

where G =
∑M
j=1 cjhjā

H
j , ā is the complex conjugate of a

and en is the n-th column of theN×N identity matrix. Thus
we can view y as the result of applying a linear measurement
operator to the structured matrix G, which we denote as y =
L′(G). To partially resolve the scaling ambiguity in cj and
hj , we assume hj has unit norm. In addition, by defining an
atomic set A = {hāH : ā ∈ {ā1, ..., āM}, ||h||2 = 1}, we
recover G, and ultimately cj and hj via solving the following
atomic norm minimization problem

minimize
G∈CK×N

||G||A subject to y = L′(G) (2.2)

where the atomic norm is ||G||A := inf{
∑
k |c̃k| : G =∑

k c̃kgk, gk ∈ A}. We can write G =
∑
k c̃kgk =∑M

j=1(
∑
k∈Nj

c̃kh̃k)āj where Nj = {k : gk = h̃kāj}.

Define hj =

∑
k∈Nj

c̃kh̃k

||
∑

k∈Nj
c̃kh̃k||2

and cj = ||
∑
k∈Nj

c̃kh̃k||2,

since |cj | ≤
∑
k∈Nj

|c̃k|, taking the infimum yields ||G||A =

inf{
∑
j |cj | : G =

∑M
j=1 cjhjā

H
j , ||hj || = 1}.

Proposition 1. The atomic norm optimization problem (2.2)
can be equivalently expressed as the following `2,1 norm op-
timization problem

minimize
X∈CK×M

||X||2,1 subject to y = L(X) (2.3)

where X = [c1h1 c2h2 · · · cMhM ] ∈ CK×M . L rep-
resents the following linear sensing process

y(n) = 〈X, b′neHn Ā〉 = b′Hn Xa′n. (2.4)

in which b′n and a′n are the n-th column of BH and AT .

Proof. Define xj = cjhj and X = [x1 x2 · · · xM ].

||G||A

= inf

{
M∑
j=1

|cj | : G =

M∑
j=1

cjhjā
H
j , ||hj ||2 = 1

}

= inf

{
M∑
j=1

||xj ||2 : G =

M∑
j=1

xjā
H
j

}

= inf

{
M∑
j=1

||xj ||2 : G = [x1 x2 · · · xM ]


āH1

āH2
...

āHM


}

= inf
{
||X||2,1 : G = XĀH

}
.

(2.5)
In addition, equation (2.1) indicates

y(n) = 〈G, b′ne
H
n 〉 = 〈X, b′neHn Ā〉 = b′Hn Xa′n. (2.6)

Note that the `2,1 norm has been applied in the sparse rep-
resentation with multiple measurement vectors (MMV) prob-
lem to exploit the joint sparsity structure [12, 13]. But if
we vectorize their linear measurement matrix, their sensing
matrix becomes a block diagonal matrix and all the diagonal
block matrices are the same which is different from our mea-
surement model. Specifically, if we reformulate the equality
condition in equation (2.3) to the matrix-vector multiplication
form, we obtain L(X) = Φ · vec(X) and Φ ∈ CN×KM is

Φ = [φ1,1 · · · φK,1 · · · φ1,M · · · φK,M ] (2.7)

in which φi,j = diag(bi)aj ∈ CN×1 and bi is the i-th
column of the matrix B. After solving problem (2.3), Dj and
cj can be easily recovered from the solution X̂ via

cj = ||x̂j ||2, hj =
x̂j
||x̂j ||2

and Dj = diag(Bhj) (2.8)

for all j and x̂j 6= 0.
Furthermore, when the observed signal contains additive

noise, n, and assume ||n||2 ≤ η, in order to make the ground
truth solution feasible, we relax the constraint in equation
(2.3) and the optimization problem becomes

minimize
X∈CK×M

||X||2,1 subject to ||y − L(X)||2 ≤ η.
(2.9)
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3. MAIN RESULTS

In this section, we present the main results of this paper. The-
orem 3.1 considers the noiseless observation and the result for
the noisy case is in Theorem 3.2.

Theorem 3.1. (Noiseless case) Consider the model in equa-
tion (1.1). Assume that BHB = IK and only J atoms of
A are committed to the observed signal. The solution X̂ to
problem (2.3) is the ground truth solution, X0, which means
cj and Dj for all j can be exactly recovered, with probability
at least 1−O(N−α+1) if A ∈ RN×M (N < M) is a random
Gaussian matrix and

N

log2N
≥ Cαµ2

maxKJ(log(M − J) + log(N)). (3.1)

Here Cα is a constant defined for α > 1 and

µmax = max
i,j

√
N |Bij |. (3.2)

Theorem 3.2. (Noisy case) Consider the model in equation
(1.3). Assume that BHB = IK , only J atoms of A are
committed to the observed signal and the norm of the noise
is bounded, ||n||2 ≤ η. Then with probability at least 1 −
O(N−α+1), if A ∈ RN×M (N < M) is a random Gaussian
matrix, the solution X̂ to problem (2.9) satisfies

||X̂−X0||F ≤
(
C1 + C2

√
J
)
η (3.3)

when
N

log2N
≥Cαµ2

maxKJ
(

log(Cµmax
√
KJ)C + 1

)
·

(log(M − J) + log(MK) + log(N))
(3.4)

where C, C1 and C2 are constant. Cα is defined for α > 1.

The assumption BHB = IK requires the columns of B
to be orthonormal because B contains the bases of the K di-
mension subspace. In addition, we require that the energy of
each column of B spreads across the whole column. In this
case, the coherence parameter µmax = maxi,j

√
N |Bij | ≈ 1

and the linear sensing process L possesses the isometry prop-
erty which is critical in the proof. The main ingredient of the
proof of Theorem 3.1 involves the construction of a dual cer-
tificate matrix. The existence of such a matrix satisfying the
properties in Proposition 2 guarantees that the ground truth
X0 is the unique solution to the minimization problem (2.3).

Proposition 2. The matrix X0 ∈ CK×M with support T ,
which is a set containing the indices of non-zero columns, is
the unique solution to the inverse problem (2.3), if there exists
a matrix Y in the range space of L∗, such that

||YT − sign(X0,T )||F ≤
1

4
√

2γ
and ||YTC ||2,∞ ≤

1

2
(3.5)

and the operator L satisfies

||L∗TLT − IT || ≤
1

2
and ||L|| ≤ γ. (3.6)

When A is a random Gaussian matrix, ||L|| ≤ γ :=√
M log(MN/2) + α log(N) with probability at least 1 −

N−α [1, 3]. Moreover, the desired dual certificate matrix can
be constructed through

vec(Y) = ΦHΦT (ΦH
T ΦT )−1vec(sign(X0,T )) ∈ CKM×1

(3.7)

where ΦT ∈ CN×KJ consists of columns φi,j with j ∈ T
and X0,T ∈ CK×J is composed of the columns of X0 on the
support T . Moreover, sign(x) = x/||x||2 and sign(X) =
[sign(x1), · · · , sign(xM )]. Therefore, we already have
YT = sign(X0,T ) and it remains to derive the conditions
under which ||L∗TLT − IT || ≤ 1

2 and ||YTC ||2,∞ ≤ 1
2 , which

can be shown using the Orlicz norm version of the Bernstein
inequality [3] and a tail inequality [14] respectively. When
the observation is contaminated with noise, we can no longer
recover the unknown parameters exactly but we can bound
the recovery error through the theorem below. It is a variation
of Theorem 4.33 in [15] adapted to our problem (2.9).

Theorem 3.3. Define Φ ∈ CN×KM and Φ · vec(X) =
L(X). The ground truth X0 has J non-zero columns with
support T and observation y = L(X0) + n with ||n||2 ≤ η.
For δ, β, θ, γ, τ > 0 and δ < 1, assume that

max
i∈TC
||ΦH

T [ΦK(i−1)+1 · · · ΦK(i−1)+K ]|| ≤ β, (3.8)

||ΦH
T ΦT − IT || ≤ δ (3.9)

and that there exists a matrix Y = L∗(p) ∈ CK×M such
that

||YT − sign(X0,T )||F ≤
1

4
√

2γ
, ||YTC ||2,∞ ≤ θ,

and ||p||2 ≤ τ
√
J.

(3.10)
If ρ := θ+ β

4
√
2γ(1−δ) < 1, then the minimizer, X̂, to problem

(2.9) satisfies

||X̂−X0||F ≤
(
C1 + C2

√
J
)
η (3.11)

whereC1 andC2 are two constants depending on δ, β, θ, γ, τ .

Most of the constants, like δ, θ and γ, have already been
specified during the construction of the dual certificate matrix.
Full details of the proof and additional results when A is the
random Fourier dictionary are available in [16].
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4. NUMERICAL SIMULATIONS

Three simulations are conducted to support our theoretical re-
sults. We set B to be the first K columns of the normalized
DFT matrix, and sample cj and hj from i.i.d standard nor-
mal distribution. The support of the ground truth solution
X0 = [c1h1 · · · cMhM ] are selected uniformly. In the first
simulation, we fix M = 200, N = 100 and vary J and K.
We run 40 trials for each setting and record the success re-
covery rate in Fig. 1. A successful recovery is declared when
the relative error, ||X̂−X0||F /||X0||F , is smaller than 10−5.
In the second simulation, we examine J and K individually.
From Fig. 2 and 3, we observe that the sufficient number of
measurements for exact recovery scales nearly linearly with
respect to J and K. In Fig. 4, we fix J = K = 5 and show
that the recovery error scales linearly with respect to the nor-
m of the additive Gaussian noise. The dashed line shows the
theoretical error bound from Theorem 3.2. When the noise
dominates the signal, the minimization (2.9) returns X̂ = 0
and the relative error (dB) becomes 0.
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Fig. 1. The relation between the subspace dimension of the
modulation matrix, K, and the number of committed atoms,
J , in terms of the success recovery rate.
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Fig. 2. The nearly linear relation between the dimension of
the observed signal, N , and the number of committed atoms,
J , in terms of the success recovery rate.
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Fig. 3. The nearly linear relation between the dimension of
the observed signal, N , and subspace dimension, K, in terms
of the success recovery rate.
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Fig. 4. The relation between the relative error (dB) and noise
to signal ratio (dB). The blue horizontal sticks and red plus
sign indicate the range of the standard deviation and the mean
of the relative error (dB) given a specific noise to signal ratio
(dB). The dashed line shows the theoretical error bound from
Theorem 3.2.

5. CONCLUSION

In this paper, we consider a general sparse recovery and
non-stationary blind demodulation problem with a random
Gaussian dictionary. We recast the problem to a column-
wise sparse matrix recovery problem which can be solved
via atomic norm minimization and its induced `2,1 norm
minimization. With noiseless observation, we derive the sam-
pling complexity for exact recovery which is proportional to
the number of degrees of freedom up to log factors. More-
over, we bound the recovery error in terms of the strength of
the noise when the observation is contaminated with noise.
Numerical simulations verify our results.
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