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ABSTRACT

We propose a novel approach for hyperspectral super-resolution
that is based on low-rank tensor approximation for a coupled
low-rank multilinear (Tucker) model. We show that the cor-
rect recovery holds for a wide range of multilinear ranks. For
coupled tensor approximation, we propose an SVD-based
algorithm that is simple and fast, but with a performance
comparable to that of the state-of-the-art methods.

Index Terms— hyperspectral super-resolution, data fu-
sion, low-rank tensor factorizations, recovery, identifiability

1. INTRODUCTION

The problem of hyperspectral super-resolution (HSR) [1] has
recenlty attracted much interest from the signal processing
community. It consists in fusing a multispectral image (MSI),
which has a good spatial resolution but few spectral bands,
and a hyperspectral image (HSI), whose spatial resolution
is lower than that of MSI. The aim of this method is to re-
cover a super-resolution image (SRI), which possesses both
good spatial and spectral resolutions. This problem is closely
related to hyperspectral pansharpening [2, 3], where HSI is
fused with a panchromatic image.

Many methods were developed for the HSR problem:
CNMF [4] , methods based on solving a Sylvester equation
[5], HySure [6], FUMI [7], to name a few. Motivated by
the linear mixing model widely used in hyperspectral image
unmixing, most of these methods are based on a coupled
low-rank factorization of the matricized HSI and MSI.

Recently, a promising tensor-based method that makes
use of the inherent 3D nature of HSI was proposed [8], where
the HSR is reformulated as a coupled CP (canonical polyadic)
approximation. An alternating least squares algorithms is pro-
posed, achieving reconstruction performance that is competi-
tive with the state of the art. The key property underlying the
approach of [8] is that the coupled CP decomposition is iden-
tifiable. This approach was also successfully used recently
for a super-resolution problem in medical imaging [9]. Still,
it has several drawbacks: for instance, the appropriate rank
of the CP decomposition is not known a priori and may be
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unrelated to the number of endmembers; the rank can also
be large, which may affect the computational complexity and
convergence of the ALS iterations. A blind block-based ver-
sion was proposed in [10] to overcome some of these issues.

In this paper, we propose an approach which is similar
in spirit to [8], but which is based on another type of low-
rank tensor factorization: we reformulate the HSR problem
as a coupled multilinear (Tucker) approximation. First, we
propose a simple closed-form algorithm that is similar to the
multilinear (or higher-order) SVD. Second, we show that, al-
though the Tucker decomposition is not identifiable1, the cor-
rect recovery of the SRI holds for a wide range of ranks, in
contrast to the ordinary Tucker factorization that is generally
not unique. Our experiments show that the proposed algo-
rithm has a performance comparable to the one of [8]. Fi-
nally, we show that the proposed approach is applicable in
the case of hyperspectral pansharpening (unlike [8], which
requires the MSI to have at least two spectral bands).

This paper is organized as follows. In Section 2, we recall
the HSR problem and the STEREO algorithm proposed in [8].
Section 3 contains our proposed coupled Tucker model and an
SVD-based algorithm for tensor approximation (SCOTT). In
Section 4 we give our main identifiability result (recoverabil-
ity) for the coupled Tucker model. Section 5 contains the nu-
merical experiments. Proofs and details omitted in this paper
can be found in the extended version of the paper [11].

Notation. In this paper we mainly follow [12] in what
concerns the tensor notation (see also [13]). We use the
symbol � for the Kronecker product, and � for the Khatri-
Rao product. We use vec{·} for the standard column-major
vectorization of a tensor or a matrix. Operation •p de-
notes contraction on the pth index of a tensor; for instance,
[A •1 M ]ijk =

∑
`A`jkMi`. For a tensor G and matrices

U , V and W , the following shorthand notation is used

[[G; U ,V ,W ]] = G •
1
U •

2
V •

3
W .

For matrices A ∈ RI×F , B ∈ RJ×F , C ∈ RK×F , we will
use a shorthand notation for the polyadic decomposition

[[A,B,C]] = [[IF ; A,B,C]]

1This is the reason why the Tucker model was discarded in [8] as a po-
tential model for hyperspectral super-resolution.
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where IF ∈ RF×F×F is a diagonal tensor of ones. For a
tensor Y ∈ RI×J×K , its first unfolding is denoted by Y (1) ∈
RJK×I . By tSVDR (X) we denote a matrix containing R
leading right singular vectors of the matrix X .

2. HYPERSPECTRAL DATA FUSION PROBLEM

2.1. Problem statement and degradation model

We consider an MSI cube YM ∈ RI×J×KM and a HSI cube
YH ∈ RIH×JH×K acquired from existing sensors (for in-
stance, LANDSAT or QuickBird). The acquired MSI and HSI
represent the same target, and YM and YH are viewed as two
degraded versions of a single SRI data cube Y ∈ RI×J×K .
The hyperspectral data fusion problem [1] consists in recov-
ering Y from YM and YH .

In this paper, we adopt the following degradation model,
written as contraction of SRI with degradation matrices:{

YM = Y •3 PM + EM ,

YH = Y •1 P1 •2 P2 + EH ,
(1)

where EM and EH denote the noise terms, PM ∈ RKM×K

is the spectral degradation matrices (for example, a selection-
averaging matrix), KM < K, and P1 ∈ RIH×I , P2 ∈
RJH×J , IH < I , JH < J , are the spatial degradation ma-
trices, i.e. we assume (for simplicity) that the spatial degra-
dation is separable; this is a valid assumption, for example,
for the commonly accepted Wald’s protocol [14], which uses
Gaussian blurring and downsampling in both spatial dimen-
sions. In this paper we consider only the case when the degra-
dation matrices P1,P2,PM are known.

2.2. CP-based approach (STEREO)

In [8] it was proposed to model the SRI as a tensor with low
CP rank, i.e. Y = [[A,B,C]], where A ∈ RI×F ,B ∈ RJ×F ,
C ∈ RK×F are the factor matrices of the CPD and F is the
CP rank. In this case, the HSR problem can be formulated as

minimize
Â,B̂,Ĉ

fCP (Â, B̂, Ĉ), (2)

where fCP (Â, B̂, Ĉ) =

‖YH − [[P1Â,P2B̂, Ĉ]]‖2F + λ‖YM − [[Â, B̂,PM Ĉ]]‖2F ,
which is a coupled CP approximation problem. For the case
when there is no noise EH ,EM = 0, the coupled CP model is
(generically) identifiable ifF ≤ min{2blog2(KMJ)c-2, IHJH},
see [8] for more details.

To solve (2), an alternating least squares (ALS) optimiza-
tion algorithm was proposed in [8], called STEREO (Super-
Resolution Tensor Reconstruction), which cyclicly updates
Â, B̂, Ĉ while minimizing fCP (Â, B̂, Ĉ). The initial guess
is chosen using the rank-F CP approximation of YM , and
solving one least squares problem. The updates in the ALS
iterations can be computed by using efficient solvers for the
(generalized) Sylvester equation [15], [16]. See [8] or [11]
for more details.

3. TUCKER-BASED DATA FUSION

3.1. Model and approximation problem

In this paper, we propose a Tucker-based coupled model as an
alternative to STEREO. Let R = (R1, R2, R3) be the multi-
linear ranks of the SRI Y , and let Y = [[G; U ,V ,W ]] be
its Tucker decomposition of the SRI, where U ∈ RI×R1 ,
V ∈ RJ×R2 and C ∈ RK×R3 are the factor matrices of
the tensor and G ∈ RR1×R2×R3 is the core tensor.

With these notations, Equation (1) becomes{
YM = [[G; U ,V ,PMW ]] + EM ,

YH = [[G; P1U ,P2V ,W ]] + EH .

The HSR formulation is thus

minimize
Ĝ,Û ,V̂ ,Ŵ

fT (Ĝ, Û , V̂ , Ŵ ), where (3)

fT (Û , V̂ , Ŵ , Ĝ) =‖YH − [[Ĝ; P1Û ,P2V̂ , Ŵ ]]‖2F
+λ‖YM − [[Ĝ; Û , V̂ ,PMŴ ]]‖2F .

(4)

3.2. An SVD-based algorithm

A suboptimal solution to problem (3) can be found by an
HOSVD-like Algorithm 1, named SCOTT (Superresolution
based on COupled Tucker Tensor approximation).

input : YM ∈ RI×J×KM , YH ∈ RIH×JH×K ,
R1, R2, R3

output: Ŷ ∈ RI×J×K

Û ← tSVDR1

(
YM

(1)
)

, V̂ ← tSVDR2

(
YM

(2)
)

,

Ŵ ← tSVDR3

(
YH

(3)
)

,

Ĝ ← argmin
G

fT (G, Û , V̂ , Ŵ )

Ŷ = [[Ĝ; Û , V̂ , Ŵ ]].
Algorithm 1: SCOTT

The computation of Ĝ in Algorithm 1 is a least squares
problem which can be solved through normal equations,
which in turn can be viewed as a Sylvester equation; hence
efficient solvers [15], [16] can be used. As shown in [11], the
computational complexity of Algorithm 1 is comparable to
that of STEREO.

4. RECOVERABILITY OF THE COUPLED MODEL

In this subsection, we give a generic uniqueness result for the
tensor recovery in the coupled Tucker model.

Theorem 4.1. Assume that P1 ∈ RIH×I , P2 ∈ RJH×J , and
PM ∈ RKM×K are fixed full row-rank matrices. Let

Y = [[G; U ,V ,W ]], (5)
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where G ∈ RR1×R2×R3 , R1 ≤ I , R2 ≤ J , R3 ≤ K, and
U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3 are random matri-
ces, distributed according to an absolutely continuous proba-
bility distribution. We also assume that EM ,EH = 0 in (1).
1. If R3 ≤ KM or (R1, R2) ≤ (IH , JH), and

R1 ≤ min(R3,KM )R2,

R2 ≤ min(R3,KM )R1

R3 ≤ min(R1, IH)min(R2, JH),

(6)

then with probability 1 there exists a unique tensor Ŷ such
that ŶM = YM and ŶH = YH .
2. If R3 > KM and (R1 > IH or R2 > JH ), then the
reconstruction is non-unique, i.e. there exist an continuum of
Ŷ such that ŶM = YM and ŶH = YH ; in fact, ‖Ŷ − Y‖
can be arbitrary large.

The proof of Theorem 4.1 is given in [11]. We illustrate
the statement of Theorem 4.1 for the case I = J , IH = JH
and R1 = R2; in Figure 1 we show that the space of param-
eters (R1, R3) is split into two regions: recoverable and non-
recoverable. The hatched area corresponds to the parameters
where condition (6) is not satisfied.

0 R3

KM

IH

R1 = R2

K

√
K

I

Recoverability

Non-recoverability

(a)

(b)

Fig. 1. recoverability region depending on R1 and R3

In [11], two other interesting observations are made. First,
it is shown that SRI recoverability is related to correct recov-
ery in tensor completion. Second, it is shown that the case
of unknown spatial degradation operators can be treated by a
blind version of SCOTT.

5. EXPERIMENTS

All simulations were run on a MacBook Pro with 2.4 GHz
Intel Core i5 and 8GB RAM. For basic tensor operations we
used TensorLab 3.0 [17]. The results are reproducible and the
MATLAB codes are available online at

https://github.com/cprevost4/HSR_Tucker.
More details on the experiments are available in the ex-

tended version of the paper [11].
As for the experimental setup, we follow [8] as closely as

possible. The main performance metric that we use is recon-
struction Signal-to-Noise ratio (R-SNR) introduced in [3]

R-SNR = 10log10

(
‖Y‖2F

‖Ŷ −Y‖2F

)
.

In all the examples, as in [8], the bands corresponding to
water absorption are removed. For all the experiments, the
degradation matrices P1, P2 are generated following Wald’s
protocol, and the downsampling factor is chosen to be 4, see
[14]. The matrix PM is a selection-averaging matrix that
splits the spectral range into equal parts.

5.1. Choice of multilinear ranks

In this subsection, we have a closer look at the Indian Pines
dataset, available online at [18], that was acquired by the
AVIRIS sensor, with LANDSAT specifications used for spec-
tral degradation. In this case, Y ∈ R144×144×200, YM ∈
R144×144×6 and YH ∈ R36×36×200. We analyze the perfor-
mance of SCOTT (R-SNR and the value of the cost function
fT defined in (4)) w.r.t. the multilinear rank employed in the
Tucker decomposition.

Figure 2 shows the R-SNR and cost function value for
R1 = R2 in [10 : 50] and R3 in [2 : 25] for which the recov-
erability condition holds (see Section 4 and Fig. 1).

Fig. 2. R-SNR (left) and fT (right) as functions of R1 and R3

While the cost function decreases as R1 and R3 increase,
the best reconstruction error (given by R-SNR) is achieved in
one of the two recoverability subregions in Fig. 1: (a) (R3 ≥
KM and R1 ≤ IH ) and (b) (R3 ≤ KM and R1 ≥ IH ) . For
subregion (b), it seems better to take R3 = KM and R1 as
large as possible, while for subregion (a), we notice a drop of
the R-SNR around R1 = IH .

We also performed the optimization of (3) with the struc-
tured data fusion framework implemented in Tensorlab [17].
In our experiment, for all the values in Fig. 2, the optimiza-
tion procedure stopped after very few iterations and did not
improve the cost function. This result seems reasonable, be-
cause it is known [19] that truncated HOSVD gives a very
good solution for a low-rank Tucker approximation.

5.2. Comparison with other algorithms

In this subsection, we compare the performance of STEREO,
SCOTT, and HySure [6]. In addition to R-SNR, different
standard metrics from [3] are used (ERGAS, SAM, CC). We
also show the computational time for each algorithm, given
by the tic and toc functions of MATLAB. As in [8], we
run STEREO for 10 iterations.

5.2.1. Semi-real data

First, we compare the results for some semi-real data, avail-
able online at [18]. The representative multilinear ranks
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are chosen to be [40, 40, 6], [30, 30, 16] and [24, 24, 25],
which correspond to different regions of recoverability. For
STEREO, we choose ranks F = 50 and F = 100 as in [8],
and for HySure we use the number of groundtruth materials
as the number of endmembers. Table 1 shows these metrics
for the Indian Pines dataset. In general, SCOTT achieves
results comparable to STEREO in the case F = 50 used in
[8]. However, the case of STEREO F = 100 gives slightly
better results than tensor rank F = 50, especially in terms of
R-SNR. SCOTT appears to be fastest in this case (although
we do not claim it, because the speed depends on the imple-
mentation). Fast algorithms for Sylvester equations are used
in both cases.

In [11], we also evaluated performance of the algorithms
for reconstruction of endmembers; our experiments show that
SCOTT allows for accurate reconstruction of spectra.

Algorithm R-SNR CC SAM ERGAS time
STEREO 50 26.93 0.9 2.24 1.02 3.06

STEREO 100 28.53 0.92 2.01 0.87 5.24
SCOTT(40,40,6) 26.32 0.89 2.34 1.07 3.03

SCOTT(30,30,16) 23.82 0.84 2.77 1.38 0.71
SCOTT(24,24,25) 24.65 0.87 2.56 1.23 0.31

HySure 26.96 0.9 2.35 1.01 16.09

Table 1. Comparison of algorithms, Indian Pines dataset

The second dataset we consider is the Salinas A-scene,
also available at [18]: it consists in a portion of the bigger
Salinas dataset. In this case, Y ∈ R80×84×204, and YM ∈
R80×84×6, YH ∈ R20×21×204. The results are shown in Ta-
ble 2. In this case, R3 = 6 seems to be the best choice for
SCOTT, which agrees with the number of materials. Our al-
gorithm is again rather fast, except for the case where it shows
a better performance than STEREO (with F = 100, which is
the rank chosen in [8] for this dataset).

In Figures 3 and 4, we show a single slice of the recon-
structed SRI for various algorithms and both datasets.

Algorithm R-SNR CC SAM ERGAS time
STEREO 50 33.03 0.97 0.89 4.11 1.63

STEREO 100 32.83 0.93 0.63 6.99 2.71
SCOTT(40,40,6) 31.5 0.95 0.7 5.17 2.51

SCOTT(14,14,15) 24.97 0.92 1.76 5.5 0.06
SCOTT(10,15,25) 23.31 0.91 1.97 5.62 0.05
SCOTT (30,30,6) 30.06 0.94 0.93 5.26 0.58
SCOTT(58, 58, 6) 32.63 0.95 0.52 5.14 23.58

HySure 28.53 0.94 0.9 5.13 4.92

Table 2. Comparison of algorithms, Salinas A-scene dataset

5.2.2. Pansharpening problem

Here, we address the pansharpening problem, which consists
in fusion of a hyperspectral image and a panchromatic image
(PAN) YP . PAN is obtained by averaging over the full spec-
tral range of the groundtruth SRI, so that PM ∈ R1×K and
YP ∈ RI×J×1.

In this case, the STEREO algorithm is not applicable,
since its initialization2 is based on the CPD of the MSI (which

2We also tried different initializations for STEREO, including an initial-
ization based on the SCOTT solution.
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Fig. 3. Band 160, Indian Pines dataset
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Fig. 4. Band 160, Salinas-A dataset

is a matrix in the case of PAN images). However, SCOTT and
HySure can perform the data fusion.

In Table 3, the metrics are shown for different multilinear
ranks and for the HySure method, for the Indian Pines dataset.
In this case as well, the previous conclusions on the metrics
hold, showing that the SCOTT algorithm is able to give a rea-
sonable solution to the pansharpening problem as well.

Algorithm R-SNR CC SAM ERGAS time
SCOTT(24, 24, 25) 20.59 0.78 4.36 1.93 0.3
SCOTT(30, 30, 16) 18.48 0.7 5.37 2.48 0.72
SCOTT(35, 35, 6) 11.38 0.41 10.53 5.71 2.14

HySure 18.01 0.62 5.97 2.68 18.97

Table 3. Metrics for different algorithms, Indian Pines dataset

6. CONCLUSION

In this paper, we proposed a novel coupled Tucker model for
the HSR problem. We showed that the model is recoverable,
and that a very simple SVD-based algorithm can be used for
the super-resolution problem (including the case of pansharp-
ening), giving results that are comparable with the CP-based
approach. We hope that this work opens new perspectives
on using various tensor factorizations for hyperspectral super-
resolution. Still several interesting questions remain, for ex-
ample, how to enlarge the recoverability range for the multi-
linear ranks.
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