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ABSTRACT

A non-negative matrix factorization (NMF) algorithm based on
Bregman monotone operator splitting (B-MOS) is proposed. Sev-
eral commonly used NMF algorithms, such as the multiplicative
update method, are often used in source separation for speech and
image signals. To improve the convergence rate in the tail, ap-
plying the alternating direction method of multipliers (ADMM) is
reported to be effective. However, a fixed step-size parameter has
to be carefully chosen for fast and stable convergence. Our main
idea to overcome this issue is to adaptively modify the variable
space metric so that it matches the cost convexity. Besides this,
selecting an appropriate MOS (e.g., Peaceman-Rachford splitting)
instead of the Douglas-Rachford splitting used in the ADMM may
effectively improve the convergence rate further. To realize these
ideas w.r.t. adaptive metric modification and appropriate operator
splitting selection, we apply B-MOS to the NMF problem and obtain
a new NMF solver in this paper. Results of numerical experiments
demonstrate that the proposed NMF solver with B-MOS improved
the convergence rate in the tail.

Index Terms— Non-negative matrix factorization (NMF),
convex optimization, Bregman divergence, multiplicative iterative
method, alternating direction method of multipliers (ADMM)

1. INTRODUCTION

Non-negative matrix factorization (NMF) [1, 2] is used to find rel-
atively few bases and their activations from noisy observation data.
It is practically used in many applications, such as source separa-
tion in speech and image signals. In some applications, it is de-
manded to shorten the processing time, including real-time process-
ing [3, 4, 5, 6]. Therefore, the goal of this study is to construct an
NMF algorithm with fast and stable convergence.

Many studies have used the multiplicative update method [1].
The cost function to be minimized is designed by a bi-convex func-
tion, i.e., it is convex with respect to one variable (e.g., bases) while
fixing another variable (e.g., activations). When variables are alter-
nately updated in accordance with the multiplicative update method,
the gradient step-size is selected to make the update procedure sim-
ple while taking its majorization function into account [1]. Although
the multiplicative update method is easy to implement, issues remain
such as a low convergence rate in the tail and difficulties in construct-
ing solvers when a combination of loss and normalization terms is
complicated.

To overcome these issues, Sun and Fevotte reported that apply-
ing the alternating direction method of multipliers (ADMM) [7] to
NMF problems was effective [8]. In this approach, the cost formu-
lation is modified to be a linearly constrained minimization problem
by replacing the NMF output, which is the product of two matrix
variables, with an auxiliary variable. The ADMM is an applicable
solver that is equivalent to applying the Douglas-Rachford splitting

[9, 10] to the dual problem. However, a gradient step-size needs to
be carefully chosen to obtain fast and stable convergence in the tail.
Moreover, the convergence rate will be further improved by using
another monotone operator splitting (MOS), such as the Peaceman-
Rachford splitting [11]. However, also in this case, a gradient step-
size needs to be adjusted.

As an advanced MOS, the Bregman-MOS (B-MOS) [12] is ap-
plied to the NMF problem in this paper. As used in the ADMM-
based conventional method [8], the cost formulation follows a lin-
early constrained minimization, and we will solve its dual problem.
In the traditional Douglas-Rachford splitting and Peaceman Rach-
ford splitting, the variable space has been latently defined by a scaled
Euclidean metric and its scale parameter corresponds to the gradient
step-size to be adjusted. B-MOS generalizes the variable space met-
ric by using Bregman divergence [13] instead of a scaled Euclidean.
By designing Bregman divergence such that it adaptively matches
the cost convexity and applying the B-MOS to the NMF problem,
we will obtain a fast and stable convergence NMF algorithm with-
out careful step-size selection. Through numerical experiments, we
will compare its convergence rate with those of several conventional
NMF solvers.

The rest of this paper is organized as follows. The problem for-
mulation and conventional NMF solvers are explained in Sec. 2. The
proposed solver based on B-MOS is provided in Sec. 3. After inves-
tigating the convergence rates through several experiments in Sec. 4,
we conclude this paper in Sec. 5.

2. CONVENTIONAL METHODS

The NMF cost form is defined in Sec. 2.1. The conventional solvers
for NMF problems are explained in Sec. 2.2.

2.1. Basic cost formulation
Let us suppose that a non-negative observed signal in a matrix form
Y ∈ R

I×J is given. It is composed of a non-negative matrix Z ∈
R

I×J and noise E ∈ R
I×J , where Z is decomposed into non-

negative factor matrices A∈RI×K and B∈RJ×K as

Y = Z+E = ABT +E (1)

where K is assumed to be relatively small and T denotes the trans-
position. As a basic formulation, the cost function J (A,B) is
composed of (i) a loss term G that measures differences between
Z=ABT and Y and (ii) regularization terms HA and HB , which
represent the probabilistic assumption for each variable:

J (A,B) = G(Y‖ABT) +HA(A) +HB(B) (2)

where regularization terms are designed so that they strictly satisfy
non-negative definitions of variables. The aim of the optimization
procedure is to find a set of variables {A,B} that minimizes the
cost while satisfying the non-negative definition as

inf
A≥0,B≥0

J (A,B). (3)
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For a loss term G, any convex, closed, and proper (CCP) func-
tions with respect to Z are assumed to be used. Since two variables
are multiplied as Z=ABT, the cost function is in a bi-convex func-
tion of A and B. Then, J is a CCP function of a variable (e.g., A)
while fixing another variable (e.g., B). Since the element separable
cost form is often utilized in the field of NMF, we implement it by
using the Bregman divergence form [13] as

GΦ(Y‖Z)=
∑
ij

(Φ(yij)−Φ(zij)−∇Φ(zij)(yij−zij)) (4)

where any differentiable strictly convex function (e.g., [14]) can be
used for Φ and ∇ denotes the differential operator. Since the β-
divergence [15, 16] is a subclass of the Bregman divergence (e.g.
[2]), it is derived by selecting Φ as follows:

Φ(β)(z) =

⎧⎪⎨
⎪⎩

zβ+1

β(β+1)
− z

β
+ 1

β+1
(β > 0)

z log z − z + 1 (β = 0)

z − log z − 1 (β = −1).
(5)

Then, the β-divergence is obtained by

GΦ(β) (Y‖Z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
ij

(
yij

y
β
ij−z

β
ij

β
− y

β+1
ij −z

β+1
ij

β+1

)
(β > 0)∑

ij

(
yij log

(
yij
zij

)
−yij+zij

)
(β=0)∑

ij

(
log

(
zij
yij

)
+

yij
zij
−1

)
(β=−1).

(6)

where we obtain the standard squared Euclidean distance when β=
1, the generalized Kullback-Leibler divergence (I-divergence) when
β = 0, and the Itakura-Saito distance when β = −1, respectively.
Other loss formulations are summarized in [2].

For the regularization terms, their design is required to make
variable definition non-negative at least. The non-negative barrier
function, which outputs zero when all matrix elements are non-
negative, is a choice of HA(A)=

∑
ik δ(aik≥0)(aik) where

δ(aik≥0)(aik)=

{
0 (aik ≥ 0)

+∞ (otherwise).
(7)

For a sparse representation of variables [17], adding L1 norm to (7)
will be effective. HB is also designed to represent the statistical
property of B.

2.2. Conventional solvers

Several conventional optimization methods for the NMF problem
are explained. First, a well-known multiplicative update method [1]
is applied to (3). In accordance with the standard gradient descent,
each variable is alternately updated as

aik←aik−ηik ∂aikJ (A,B), bjk←bjk−ηjk ∂bjkJ (A,B) (8)

where ηik is a gradient step-size and the subgradient is given by
∂aikJ = ∂J/∂aik. As an example, the β-divergence (6) is used
for G. Since G,HA and HB are assumed to be separable for each
element, the subgradient of J is given by

∂aikJ (A,B) =
J∑

j=1

(
yij/[ABT]1−β

ij

)
bjk−∂aikHA(A), (9)

∂bjkJ (A,B) =

I∑
i=1

(
yij/[ABT]1−β

ij

)
aik−∂bjkHB(B). (10)

By selecting a step-size as ηik = aik/
∑J

j=1[ABT]βijbjk and ηjk =

bjk/
∑I

i=1[ABT]βijaik, the update rule in a matrix form is given by

aik← aik

[∑J
j=1

(
yij/[ABT]1−β

ij

)
bjk−∂aikHA(A)

]
+∑J

j=1[ABT]βijbjk + ε
, (11)

bjk← bjk

[∑I
i=1

(
yij/[ABT]1−β

ij

)
aik−∂bjkHB(B)

]
+∑I

i=1[ABT]βijaik + ε
(12)

where [Z]+ =max{Z,0}. However, it has been reported that its
convergence rate in the tail is relatively slow (e.g., [17, 18, 19]).

To overcome this issue, applying ADMM to the NMF problem
may be effective, as reported in [8]. The main idea of this method is
to replace the NMF output ABT by Z and modify the cost function
by a linearly constrained minimization form as:

inf
Z≥0,

A≥0,B≥0

G(Y‖Z)+HZ(Z)+HA(A)+HB(B) s.t. Z=ABT (13)

where HZ is a normalization term for Z. The formulation (13) is
different from that of [8] because we want to use arbitrary normal-
ization terms for HZ ,HA,HB . By using a dual variable U∈RI×J ,
the Lagrange function associated with (13) is given by

L(Z,A,B,U) = G(Y‖Z) +HZ(Z) +HA(A) +HB(B)

+
〈
U,Z−ABT

〉
(14)

where 〈U,Z〉 = tr(UTZ). The ADMM is a solver for the dual
problem of a linearly constrained minimization, given

sup
U

inf
Z≥0,

A≥0,B≥0

L(Z,A,B,U). (15)

The update procedure is not described in detail here because the pro-
posed method will provide a generalized solver including ADMM.
Sun and Fevotte reported that applying ADMM effectively improved
the tail convergence rate. However, a gradient step-size had to be
carefully chosen to obtain a fast and stable convergence [8].

3. PROPOSED METHOD

For an NMF algorithm that improves the convergence rate without
needing a step-size to be carefully chosen, B-MOS is applied to the
dual problem (15). After the basic procedure is provided in Sec. 3.1,
the algorithm of the proposed NMF solver is explained in Sec. 3.2.

3.1. Proposed algorithm using B-MOS

B-MOS [12] is a generalization of MOS solvers that will be effective
for fast convergence by appropriately modifying the variable space
metric. The conventional ADMM is equivalent to applying Douglas-
Rachford splitting to the dual problem as in (15). Then, it needs a
gradient step-size to be carefully chosen because the variable space
metric is defined by a scaled Euclidean. Since B-MOS generalizes
MOS by using Bregman divergence, the step-size selection will be
eliminated if Bregman divergence is designed so that it adaptively
matches the cost convexity. (The details of Bregman divergence de-
sign are given in Sec. 3.2.) In addition to the adaptive metric modi-
fication, selecting an appropriate MOS, such as Peaceman-Rachford
splitting [11], will also be effective for fast convergence. In our B-
MOS based NMF algorithm, generalized Peaceman-Rachford split-
ting and Douglas-Rachford splitting are used.

To apply B-MOS to the dual problem, (15) is transformed into
the minimization of the sum of CCP functions as

sup
U

inf
Z≥0,

A≥0,B≥0

L(Z,A,B,U)= sup
U

[
− sup

Z≥0

(
−〈U,Z〉−G(Y‖Z)

−HZ(Z)
)
− sup
A≥0,B≥0

(〈
U,ABT

〉
−HA(A)−HB(B)

)]

= − inf
U

(
G�(−U) +H�(U)

)
(16)
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where the convex conjugate functions [20] w.r.t. G(Y‖Z)+HZ(Z)
and HA(A)+HB(B) are respectively denoted by G� and H�as

G�(−U)= sup
Z≥0

(
−〈U,Z〉−G(Y‖Z)−HZ(Z)

)
, (17)

H�(U)= sup
A≥0,B≥0

(〈
U,ABT

〉
−HA(A)−HB(B)

)
. (18)

For a simple notation, the subdifferential of each convex conju-
gate function is denoted by T1(U) = −∂G�(−U) and T2(U) =
∂H�(U), where it maps from an input matrix to an output matrix,
i.e., Ti : R

I×J→ R
I×J . For the problem (16), the fixed point is

obtained when its subgradient includes a zero matrix as:

0 ∈ T1(U) + T2(U) (19)

where ∈ indicates that the output through Ti might be multivalued
at discontinuous points. To modify its variable space metric, we
introduce a differentiable strictly convex function D : RI×J → R∪
{∞} whose gradient satisfies∇D(0) =0. This is because applying
the inverse operator of ∇D, i.e., (∇D)−1 : RI×J→R

I×J , to both
sides of (19) will not affect the fixed point as

0 ∈ (∇D)−1 ◦T1(U) + (∇D)−1 ◦T2(U) (20)

where ◦ synthesizes two operators, e.g., (∇D)−1 and Ti.
Reformulation of (20) results in the B-MOS algorithms as

summarized in [12]. As a result, we use the Bregman Peaceman-
Rachford (B-P-R) splitting and the Bregman Douglas-Rachford
(B-D-R) splitting in this paper. As a preliminary step, we introduce
a dual auxiliary variable X that satisfies U ∈ R1(X), where Ri is
the D-resolvent operator [21] defined by Ri =(I+(∇D)−1◦Ti)

−1.
The recursive variable update forms of B-P-R and B-D-R splitting
are respectively given by reformulating (20) by

X ∈ CT2 ◦CT1(X) (B-P-R splitting) (21)

X ∈ ξCT2 ◦CT1(X) + (1− ξ)(X) (B-D-R splitting) (22)

where the D-Cayley operator [12] is defined by Ci=
(
I+(∇D)−1◦Ti

)−1

◦(I− (∇D)−1◦Ti

)
=2Ri− I and ξ ∈ (0, 1) is an averaging coef-

ficient. Since applying the averaged operator to (21) results in
(22), the convergence rate with B-P-R will be faster than that with
B-D-R. By decomposing the recursive updates (21) and (22) into
simpler procedures by using other dual auxiliary variables V,W,
the recursive update rules are reorganized by

U←R1(X)=
(
I+(∇D)−1 ◦T1

)−1
(X) (23)

V←C1(X)= 2U−X (24)

W←R2(V)= (I+(∇D)−1 ◦T2)
−1(V) (25)

X←
{
C2(V)= 2W−V (B-P-R splitting)
ξC2(V)+(1−ξ)X=ξ(2W−V)+(1−ξ)X(B-D-R splitting).

(26)
However, two issues remain: (i) how to update a primal-dual

variable by using the D-resolvent operator in (23) and (25) and (ii)
how to design a strictly convex function D to effectively modify
the metric of variable space. When we select the Frobenius norm
as D(U) = 1

2κ
‖U‖2F (κ>0), the algorithm (23)-(26) results in the

traditional Peaceman-Rachford and Douglas-Rachford splitting. By
selecting D(U) in such a way that it adaptively matches the cost
convexity, not only does careful step-size selection become unnec-
essary but also fast and stable convergence is obtained. Algorithm
implementations associated with these issues are briefly explained in
the next subsection.

Algorithm 1 Proposed algorithm based on B-P-R/B-D-R splitting

Initialization of A,B,Z, X̃
for t = 1, . . . , T

Z← argminZ≥0

(
G(Y‖Z)+HZ(Z)+BD†(Z‖X̃)

)
Ṽ ← X̃− 2Z

A← argminA≥0

(
HA(A)+BD†(ABT‖ −Ṽ)

)
B← argminB≥0

(
HB(B) +BD†(ABT‖ −Ṽ)

)
X̃←

{
Ṽ + 2ABT (B-P-R splitting)
ξX̃+ (1− ξ)(Ṽ+ 2ABT) (B-D-R splitting)

end for

3.2. Update rule and D-design for fast convergence rate
A primal-dual variable update rule following (23)-(26) is given. As
an implementation of (23), an alternate update rule for primal-dual
variables {Z,U} is often used (e.g., [22, 23]). Although the deriva-
tion is shown in Appendix, procedures (23), (24) for the nonlin-
early transformed dual auxiliary variables V=(∇D)−1(Ṽ), X=

(∇D)−1(X̃) result in

Z← argmin
Z≥0

(
G(Y‖Z) +HZ(Z) +BD†(Z‖X̃)

)
(27)

Ṽ← X̃− 2Z (28)

where the Bregman divergence BD† is used to generalize a variable
space metric and it includes a strictly convex function D† that satis-
fies∇D† =(∇D)−1 as

BD†(Z‖X̃)=D†(Z)−D†(X̃)−
〈
(∇D)−1(X̃),Z−X̃

〉
. (29)

The update rule for other procedures in (25), (26) is also given in
the same way. The overall update procedure that follows (23)-(26)
is summarized in Algorithm 1.

Next, an appropriate D-design to obtain fast convergence with-
out a gradient step-size adjustment is explained. Since a Euclidean
metric D(Z)= 1

2κ
‖Z‖2F is latently used in the conventional ADMM,

it needs to choose κ to control the step-size. To make its tuning pro-
cess unnecessary, D is designed such that it adaptively matches the
cost convexity as the Newton or accelerated gradient descent (AGD)
methods. However, since the number of matrix elements is huge, the
second-order gradient for each element is heavy to calculate. For a
simple D-design, we approximate the convexity property of G by a
local quadratic function around the present variable zold

ij . When the
cost function is given by an element separable form as in (4), G is
approximated by a sum of element separable quadratic functions:

D†(Z)=
1

2

∑
ij

(hij + ε)z2ij (30)

where the second-order convexity hij =∇2
ijG(zold

ij ) is updated for
each iteration, D(Z) = 1

2

∑
ij

1
hij + ε

z2ij that satisfies ∇D(0) = 0,

and a small coefficient ε(>0) is used to make D strictly convex.
To reduce updating time for the procedure, we further impose a

restriction on hij . We noticed that {A,B}-update in Algorithm 1 is
computationally heavy because the matrix product is included in the
penalty term of the Bregman divergence. To make the matrix product
simple, hij is imposed to be the (i, j)-th element of H = hAh

T
B

where hA ∈ R
I and hB ∈ R

J . As an implementation, K-element
averaged second-order convexity was used for {hA,hB}.

Note that the update rule based on the conventional ADMM is
also given by Algorithm 1, then the B-D-R splitting with ξ = 0.5
and a Euclidean metric D(Z)= 1

2κ
‖Z‖2F = 1

2κ

∑
ijz

2
ij are selected.
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Fig. 1. Convergence curves measured with (a) cost function J and
(b) variable error E

4. NUMERICAL EXPERIMENTS

4.1. Experimental conditions
To evaluate the proposed algorithms, we conducted experiments
by using artificially generated data with a certain size {I, J,K}=
{400, 1000, 50}. Assuming that ground-truth matrices {AGT,BGT}
are sparse, their elements were generated so that 10 % of their el-
ements have non-zero values. After adding uniform noise E, the
prior SNR of Y was 10 log10(‖AGTB

T
GT‖2F /‖E‖2F )=20.3 [dB]. In

a problem to estimate {A,B}, the I-divergence in (6) (β=0) was
used for a loss term and L1 norm was used for a regularization term
as HA(A)=

∑
ik

(
δ(aik≥0)(aik)+μA|aik|

)
where μA=0.05. The

same form was used for another regularization term HB(B).
As summarized in Algorithm 1, our proposed algorithms are

(Prop #1) the B-P-R splitting with adaptive D-design (30) and (Prop
#2) the B-D-R splitting with adaptive D-design (30). They are both
applied to a majorization of cost function J . For the comparison
methods, we selected (Conv #1) the multiplicative iterative method
(11)-(12) and (Conv #2) ADMM, but the detailed update procedure
of these methods is different from that of the conventional ADMM-
based NMF [8] because the cost form was changed. As noted in
Sec. 3.2, the update rule in ADMM is given by Algorithm 1 where
the B-D-R splitting with ξ = 0.5 and a Euclidean metric D(Z) =
1
2κ
‖Z‖2F were selected. Since the convergence rate with ADMM

was significantly changed with the parameter selection, κ = 0.25
was selected that works the most stably among manually adjusted
values. For proposed methods, step-size parameter does not need to
be selected unlike in ADMM.

For evaluation measures, (i) the cost value J (A,B) and (ii)
the variable error E(A,B) were calculated by using ground-truth
matrices for each iteration:

J (A,B) = G(AGTB
T
GT‖ABT) +HA(A) +HB(B),

E(A,B) =
1

2IJ
‖AGTB

T
GT −ABT‖2F .

Since the update procedure time for an iteration was different for
each method, evaluation scores and processing time were recorded.
The algorithms were implemented in Matlab and T =200 iterations
were executed with a CPU (Intel Core i7 2.4 GHz).

4.2. Experimental results

Fig. 1 shows the convergence curves where evaluation measures
were given by the cost function and the variable error. From these
convergence curves, Prop #1 (B-P-R splitting) was the fastest and
Prop #2 (B-D-R splitting) was the second fastest when the iteration
number was used on the horizontal axis. Although the computation
time was the shortest with Conv #1 (multiplicative update) as shown
in Table 1, the convergence rate in the tail deteriorated as reported by
Sun and Fevotte [8]. The results eventually obtained with the Conv
#2 (ADMM) were better than those obtained with Conv #1. The

Table 1. Evaluation scores after T=200 iteration times

Prop #1 Prop #2 Conv #1 Conv #2

Processing time [sec] 97.7 90.2 74.9 92.0
Cost J [dB] 38.2 38.3 40.2 38.4
Variable error E [dB] -19.3 -19.4 -15.8 -17.9

proposed methods maintain their convergence rates even in the tail
and obtained better estimation results than the conventional methods.

5. CONCLUSION

An NMF algorithm based on Bregman monotone operator splitting
(B-MOS) was constructed for fast and stable convergence. As used
in the conventional ADMM-based NMF, the cost function is refor-
mulated from a bi-convex form to a linearly constrained convex min-
imization form, and we solve the dual problem. By applying B-MOS
algorithms with an appropriate Bregman divergence design, the vari-
able space metric is adaptively modified such that it matches the cost
convexity and results in fast convergence without careful step-size
selection. Results of several experiments demonstrated that the pro-
posed B-MOS based algorithms improved the convergence rate, es-
pecially in the tail.

For future work, we will apply this method to practical applica-
tions such as source enhancement for audio and speech sources. We
will analytically predict the convergence rate and use our method to
explain the convergence rate differences in the tail.

6. APPENDIX

The primal-dual variable update procedure in the D-resolvent op-
erator is given. The procedure (23) includes an iterative update of
primal-dual variables {Z,U} as seen in (17). Let us consider the
problem associated with the convex conjugate function G� as

inf
Z

G(Y‖Z) +HZ(Z) s.t. Z = 0. (31)

This is equivalent to an update Z that minimizes the associated La-
grangian Q(Z,U) = G(Y‖Z)+HZ(Z)−〈U,Z〉. When the sub-
gradient of Q includes zero, the set of variables {Z,U} satisfies

0 ∈ T−1
1 (Z)−U ⇔ Z ∈ T1(U), (32)

where the inverse of T1 corresponds to the ∂ (G(Y‖Z)+HZ(Z))
= T−1

1 (Z) is used (e.g., [22, 23]). For the input/output pair of the
D-resolvent operator U∈R1(X), (23) is reorganized by using (32):

(I + (∇D)−1 ◦T1)(U) ∈ X,

U+ (∇D)−1(Z) = X, 0 ∈ T−1
1 (Z)−U. (33)

By reorganizing (33), {Z,U} are found to be associated with

0 ∈ T−1
1 (Z) + (∇D)−1(Z)−X. (34)

Integral of (34) gives the Z-update procedure as

Z← argmin
Z≥0

(
G(Y‖Z) +HZ(Z)− 〈X,Z〉+D†(Z)

)
. (35)

From (33), the U-update procedure using Z is given by

U← X− (∇D)−1(Z). (36)

Integration of procedures (36) and (24) removes a dual auxiliary
variable U as

V←X− 2(∇D)−1(Z). (37)

For further simplified notation, we put additional dual auxiliary vari-
ables by V=(∇D)−1(Ṽ), X=(∇D)−1(X̃). Substituting these
variables into (35) and (37) resulted in (27) and (28), respectively.
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