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ABSTRACT

In many signal processing tasks, one seeks to recover an r-
column matrix object X € C™*" from a set of nonnegative
quadratic measurements up to orthonormal transforms. Example
applications include coherence retrieval in optical imaging and co-
variance sketching for high-dimensional streaming data. To this
end, efficient nonconvex optimization methods are quite appealing,
due to their computational efficiency and scalability to large-scale
problems. There is a recent surge of activities in designing noncon-
vex methods for the special case » = 1, known as phase retrieval;
however, very little work has studied the general rank-r setting.
Motivated by the success of phase retrieval, in this paper we derive
several algorithms which utilize the quadratic loss function based
on amplitude measurements, including (stochastic) gradient descent
and alternating minimization. Numerical experiments demonstrate
their computational and statistical performances, highlighting the
superior performance of stochastic gradient descent with appropri-
ate mini-batch sizes.

Index Terms— Low-rank matrix recovery, quadratic measure-
ment, nonconvex optimization

1. INTRODUCTION

In this paper, we are interested in recovering an 7-column matrix ob-
ject X € C™*" from a set of nonnegative quadratic measurements,
given as

yi=la?X|3, i=1,...,m, 1)

where a; € C" is the ith sensing vector, and m is the number of
measurements. In the Gaussian design, the sensing vectors are gen-
erated i.i.d. from a complex-valued Gaussian distribution, i.e. a; e
N(0,31I,) + jN(0, 1 I,,). Equivalently, this problem amounts to
recovering a rank-r positive semidefinite matrix M = X X ¢
C™ ™ from a set of linear measurements

yi = al' Ma; = (M, a;a"), 2)

where the sensing matrix a;a” is rank-one. Since the measurements
y = {y: }i%, are nonnegative, they are dubbed phaseless measure-
ments. The goal is to recover M, or equivalently the factor X up
to orthonormal transforms from as few measurements m < n? as
possible. This problem arises in many applications, ranging from
coherence retrieval in optical imaging [1], covariance sketching of
high-dimensional streaming data [2, 3] for the general rank-r case,

This work is supported in part by ONR under the grant N00014-18-1-
2142, by ARO under the grant WO11NF-18-1-0303, and by NSF under grants
CCF-1806154 and ECCS-1818571.

978-1-5386-4658-8/18/$31.00 ©2019 IEEE

5526

to phase retrieval [4-7] for the rank-1 case. The measurements y
are quadratic in both a;’s and X, and we therefore also refer to this
sensing model as quadratic sensing.

There are two lines of approaches to solve this problem. The first
one is based on convex relaxations to solve for the low-rank matrix
M [5,8]. These algorithms perfectly recover the underlying matrix
M at a near-optimal sample complexity under the Gaussian design.
However, the computational complexity of the resulting semidefi-
nite programs scale at least cubically with the dimension of M, and
therefore is prohibitive when the problem size is large.

This leads to the second line of approaches, which are iterative
algorithms based on nonconvex optimization that directly estimate
the factor X [9-12]. In [13,14], it is proposed to recover X directly
by minimizing the following loss function that is the squared error
of the intensity measurements y;:

ta(U) = 5" (i~ lal'UJ3)" @)
i=1

where U € C™"*". The algorithm proposed in [13, 14] is gradient
descent with spectral initialization, and its efficiency is proved in
[14] for the Gaussian design.

1.1. Our contributions

This paper proposes to solve for X by minimizing the squared error
of the amplitude measurements, that is, z; = /y; fort = 1,...,m.
The goal is to minimize the following loss function:

m

()= =3 (2~ alU]L2)

i=1

2
)

“

which is both nonconvex and nonsmooth. To the best of our knowl-
edge, this loss function has not been considered to solve the general
rank-r quadratic sensing problem considered here. Compared with
the intensity-based loss function (3), the amplitude-based loss func-
tion (4) is a lower-order polynomial with respect to a U, and there-
fore is expected to have better curvatures around the global optimum,
and more amenable to fast computation. We developed three algo-
rithms to optimize (4): gradient descent (GD), mini-batch stochastic
gradient descent (SGD), and alternating minimization, which are ini-
tialized by the spectral method based on amplitude measurements.
All of these algorithms converge to a critical point of £(U), and em-
pirically achieve stronger statistical and computational performances
than optimizing the intensity-based loss function (3) via gradient de-
scent [14].
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1.2. Related Work

This work is motivated by the successful adoption of the amplitude-
based loss function in phase retrieval [15-17], where it achieves
near-optimal computational and statistical complexities without
requiring sophisticated truncation or regularization procedures as
using the intensity-based loss function [10]. Besides [13, 14], an
exponential-type gradient descent algorithm is proposed in [18] to
minimize (3), which is similar to the truncation rule in [10] to sup-
press samples that heavily influence the search direction. A few
papers proposed other algorithms to solve the quadratic sensing
problem, including but not limited to [19, 20], but they are applied
to either the lifted formulation (2) or the intensity-based based loss
function (3).

1.3. Paper Organization and Notations

The rest of this paper is organized as follows. Section 2 presents
the proposed algorithms using the amplitude-based loss function, in-
cluding (stochastic) gradient descent and alternating minimization.
Section 3 examines and provides numerical comparisons of the pro-
posed algorithms with existing approaches. Finally, we conclude in
Section 4.

‘We use boldfaced symbols to represent vectors and matrices. For
any vector v, we let ||v]|2 denote the ¢2 norm. For any matrix M,
we let | M || denote the Frobenius norm. In addition, we use M*
and M to indicate the conjugate transpose and the pseudo-inverse
of M, respectively. The diagonal matrix with the diagonal entries
given by the vector v is denoted as diag(v).

2. AMPLITUDE-BASED NONCONVEX OPTIMIZATION

We start by providing the intuition behind using the amplitude-based
loss function (4) and then introduce three different algorithms to
minimize it: gradient descent, stochastic gradient descent which also
utilizes mini-batches, and alternating minimization. Finally, we pro-
pose a spectral initialization based on the amplitude measurements.

2.1. Making Sense of the Amplitude-Based Loss Function

We start by defining a generalized “phase” vector

H
a; X
bl = — = _cC” )
" llaf Xl
corresponding to each phaseless measurement. Then with the am-
plitude measurements z; = ||a’’ X |2, we can write a set of linear
measurements of X as

H H :
a;’ X =b; 2, i=1,...,m.

Furthermore, define

ai’ by’ z1
all bl 22

A=| |, B=| .|, z=1|.]. (6)
Cl»,li bﬁ Zm

Then we can compactly write
AX = diag(z)B. @)

Indeed if the matrix B is known, then X can be solved via standard
least-squares. The challenge is that the phase term B is unknown

Algorithm 1 Gradient Descent with Amplitude Loss

Input: {z;}i%,, {@i}i%,, step size ux
Initialization:
Obtain Uy from Spectral Initialization (Algorithm 4)
Gradient Updates:
fork=0,1,2,...., K — 1 do

H H
Wi, = diag ([”“1 Upll=z1 Hamukug—zm})

laff U2 laB Ugll2
Uk+1 = Uk — %AHW]CAUkH
end for
return Ug

and we cannot apply least-squares directly. To this end, we aim to
find the phase matrix B and X that minimize the loss function:

min (U, P) = _||AU - diag()P[}:,  ®

U.lpill2=1

under the constraint that the rows of P are unit-norm. Interestingly,
when fixing U (the estimate of X), the phase vector that minimizes
the right-hand side of (8) can be found in a closed-form as

p! =al'U/|a{'Ul|.. 9)

Plugging (9) into £(U, P) lead to the amplitude-based loss function
in (4):
U)= min ((U,P).
llpsll2=1
In words, the amplitude-based loss function can be regarded as an
attempt to approximate the least-squares loss in the absence of the
phase information.

2.2. Gradient Descent

A first approach is to apply gradient descent to minimize (4), which
may proceed at each iteration £ > 0 as

Uit+1 = Ui — . VE(Uy) (10)

for some step size ux, and Uy is a properly chosen initialization
that will be discussed later. Due to the nonsmoothness of the loss
function, the generalized gradient [21] of £(U') with respect to U is
used:

m

2 H a;afU
VLU) = - ;1 (Haz‘ Ul2 - Zz) U

The details of gradient descent with the amplitude loss function is
given in Algorithm 1. Comparing with the least-squares case when
the generalized phase matrix B is known, here at each iteration, the
phase vector is estimated via the current iterate.

2.3. Mini-Batch Stochastic Gradient Descent

Next, we implement a stochastic version of gradient descent using
mini-batches, which is found in practice to be compelling both sta-
tistically and computationally. By utilizing a stochastic method with
an appropriate mini-batch size, we significantly decrease the compu-
tation cost per iteration while still converging at a moderate number
of iterations. The details of the mini-batch stochastic gradient de-
scent (SGD) is given in Algorithm 2.
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Algorithm 2 Mini-Batch SGD with Amplitude Loss
Input: {z;};2, {a:}i~, mini-batch size B, step size ux
Initialization:
Obtain Uy from Spectral Initialization (Algorithm 4)
Gradient Updates:
fork=0,1,2,.... K — 1do
Choose I'y, uniformly at random from {1, 2, ..., m} with cardi-
nality B and update
xS Fk})

H
Wr, = diag ({ Ha\fa? Iffl‘fn;
Uiy =Ug — %AII{CWF;CAF;CUM
where Ar, is a matrix stacking of afI for i € T'y as its rows.
end for
return Ug

Algorithm 3 Alternating Minimization
Input: {z;}i2, and {a; }i2,
Initialization:
Obtain Uy from Spectral Initialization (Algorithm 4)
Alternating Updates:
fork=0,1,2,.... K — 1do

— Aldi AL 7o
Ui = Aldiag (| b - ety ) ) AU
end for
return Ug

2.4. Alternating Minimization

Last but not least, we propose alternating minimization (AltMin)
to update the phase matrix and the signal sequentially to minimize
£(U, P) in (8), which leads to a direct generalization of the well-
known Gerchberg-Saxton algorithm for phase retrieval [22] to the
general quadratic sensing problem. In words, at each iteration £ > 0,
we update each row of the phase matrix Py, = [p’f7 e ,pfﬁ}H as
)" = al'U/|alUyll2, i=1,...,m, (D)
Then, we update U1 by fixing P and solving a least-squares
problem:

Upt1 = argming ccnxr ||AU — diag(2) Pi |3 (12)
= A diag(2) Py

— Al di “1 o m AU,
lag([namnz’ aZ U2 k

The details of the alternating minimization algorithm is shown
in Algorithm 3. It is easy to check that this update rule is guaranteed
to not increase the amplitude loss function at every iteration:

R T 2
U(Ug41) = =3 llafUki1 — yipi
(Uk41) = min 3 @i’ Uk+1 — yipill2

1 R
< EHAUkH — diag(y) P |3

1 .
< —|| AU, - diag(y) Pe|3

where the second inequality follows from (12).

2.5. Spectral Initialization

So far, all of the algorithms require an initialization Uy, which hope-
fully is close to the ground truth X that we wish to recover. The
spectral method is a popular method to provide a high-quality initial
guess in nonconvex optimization, where we construct a data matrix
based on the measurements and sensing vectors and use its principal
subspace to provide an initial guess. In this paper, we advocate the
use of amplitude measurements to construct the data matrix, as de-
tailed in Algorithm 4. The method is inspired by [14], except for the
use of amplitude measurements. Numerical experiments in the later
section will verify the advantage of this approach.

Algorithm 4 Spectral Initialization with Amplitude Measurements
Input: {z;}i%,, and {a;};%,
Define the data matrix D = ﬁ ZZ’; ziaiaf{ .
Obtain the r normalized eigenvectors Zy € C™*" corresponding
to the r largest eigenvalues of D.
Obtain the diagonal matrix Ag € C™*", with entries on the diag-
onal given by

[Aoli=N(D) =X\, i=1,..,7

where A = L 37 | z; and \;(D) is the ¢ largest eigenvalue of
D.

return Uy = ZoAé/Q.

3. NUMERICAL EXPERIMENTS

In this section, we provide the empirical performance of various
amplitude-based algorithms that we consider, with comparisons to
gradient descent based on the intensity-based loss function [14]. We
will first compare their statistical performance in terms of sample
complexities, and then compare their computational performance in
terms of wall-clock time taken to achieve a desired accuracy. Ex-
tensive experiments are conducted over a wide range of settings of
problem dimensions; here we report the most representative results
that we find are consistent over different problem instances.

For each run, the entries of the sensing vectors a; are gener-
ated i.i.d. using complex-valued Gaussian variables A/ (O, %In) +
JN(0, %I n). The performance is measured using the Normalized
Mean Squared Error (NMSE), defined as

|[UU® — XXH|r
| X X || r ’

where U is the estimate of an algorithm. For GD and mini-batch
SGD with the amplitude loss function, we use a constant step size of
1 = 0.8, whereas for GD with the intensity loss function, we use a
constant step size of ;1 = 0.13, which are optimized for convergence
consistency. Additionally, we pick a mini-batch size of B = [ %] for
SGD, which performs the best in terms of convergence time.

NMSE =

(13)

3.1. Comparisons of Spectral Initialization Methods

We start by comparing the performance of spectral initializations us-
ing amplitude and intensity measurements. In order to justify the
used of amplitude measurements with spectral initialization, we ran
an experiment of 10, 000 trials to compare the empirical distribution
of NMSE using the amplitude-based and intensity-based spectral ini-
tialization, as shown in Fig. 1. The amplitude-based spectral initial-
ization provides a lower NMSE and has a much lower variance than
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the intensity-based spectral initialization. For the rest of the simula-
tions, we will use the amplitude-based spectral initialization.

2500

I Amplitude Based Spectral Initialization
[_Jintensity Based Spectral Initialization

2000

-
(42
[}
o

Frequency

1000

500

Fig. 1. The empirical distribution of NMSE for spectral initialization
constructed using amplitude and intensity measurements.

3.2. Comparisons of Statistical Performance

An important metric for the proposed algorithms is the minimum
number of measurements required in order to recover the ground
truth. Fix n = 50 and » = 4. We vary the number of measure-
ments and measure the empirical success rate of each algorithm over
50 Monte Carlo simulations. A trial is labeled as a success when
NMSE < 107°. Fig. 2 shows the empirical success rate with respect
to the sampling ratio m/(nr) using the same spectral initialization,
for GD using the amplitude-based loss, GD using the intensity-based
loss, mini-batch SGD using the amplitude-based loss, and alternat-
ing minimization. All the algorithms achieve perfect recovery as
long as the sampling ratio is large enough; moreover, all of three pro-
posed algorithms experience a phase transition using fewer measure-
ments than GD using the intensity-based loss, indicating the benefit
of the amplitude-based loss. Finally, the mini-batch SGD outper-
forms the rest of the algorithms, which is consistent with the obser-
vation in the phase retrieval case [15].

3.3. Comparisons of Computational Performance

We next compare the computational performance of each algorithm,
by demonstrating the decrease in NMSE as time passes. We track the
convergence in terms of wall-clock time as opposed to the number
of iterations to avoid the confounding variable of time-per-iteration.
All of experiments were run on a MacBook Air with a 2.2 GHz Intel
Core i7 and 8 GB of 1600 MHz DDR3 RAM.
Fig. 3 shows the NMSE with respect to the wall-clock time when
n = 50, r = 4, and m = 800 using the same spectral initialization
for the same set of algorithms as in Fig. 2. Again, to achieve the
same accuracy in terms of NMSE, GD using the intensity-based loss
requires more time than all three algorithms using the amplitude-
based loss. In particular, the mini-batch SGD requires significantly
less time than GD or alternating minimization, due to its much faster

execution per iteration.
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Fig. 2. The empirical success rate with respect to the sampling ratio
m/(nr) for various algorithms, when n = 50 and r = 4.
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Fig. 3. The NMSE with respect to wall-clock time for various algo-
rithms, when n = 50, » = 4 and m = 800.

4. CONCLUSIONS

In this paper, we propose three new nonconvex approaches for solv-
ing quadratic sensing, or equivalently, low-rank matrix recovery
from rank-one measurements, which all utilize an amplitude-based
loss function as opposed to an intensity-based loss function. Nu-
merical experiments are provided to demonstrate their advantages
over using the intensity-based loss function in terms of both sample
complexity and computational complexity.

In the future, we would like to provide theoretical analysis to
guarantee the convergence of each of these algorithms to the global
optimum solution as long as the sample size is sufficiently large.
Another interesting venue of research would be to demonstrate the
stability of these algorithms to noise and/or the presence of outliers
in the measurements [23] using random initialization [24].
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