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ABSTRACT

In this paper, we provide a new mathematical framework for

identifying the parameters of a linear system from its response

to multiple unknown waveforms. We assume that the system

response is given by an unknown number of scaled versions

of time-delayed and frequency-shifted unknown waveforms.

Then, we develop a blind two-dimensional super-resolution

framework that is based on the convex atomic norm frame-

work to recover the continuous time-frequency shifts as well

as the unknown waveforms. We prove that under a minimum

separation condition between the time-frequency shifts and

with a certain lower bound on the total number of the ob-

served samples, all the unknowns in the system can be recov-

ered precisely and with high probability. Simulation results

that confirm the theoretical findings in the paper are provided.

Index Terms— Super-resolution, atomic norm, blind de-

convolution.

1. INTRODUCTION

Super-resolution techniques are concerned by obtaining high-

resolution information from coarse-scale data. Moreover,

they also known to break the natural limit achieved by stan-

dard compressed sensing algorithms. Such techniques have

been applied in many applications such as radar imaging,

medical imaging, and communication systems [1, 2, 3]. In

this paper, we consider a linear system in which the observed

signal y (t) is a weighted sum of R different versions of

time-delayed and frequency-shifted unknown signals sj (t),
i.e.,

y (t) =

R∑

j=1

cjsj (t− τ̃j) e
i2πf̃jt. (1)

Here, the unknown cj ∈ C while
(
τ̃j , f̃j

)
is the unknown

continuous time-frequency shift. Finally, we assume that R is

also unknown. Thus, the question here is that given y (t) can

we retrieve the unknown quintuple (R, cj , τ̃j , f̃j , sj (t))?
The formulation in (1) appears in a variety of applications

in signal processing and communication. In military radar ap-

plication, a spying receiver might use the R unknown trans-

mitted waveforms from the enemies transmitters to locate the

position of a target. The target location can be obtained by

estimating its distance and relative velocity from the spying

receiver which are included in the continuous time-frequency

shifts. These shifts can lie anywhere in the continuous domain

and not necessarily on a discrete grid. Other applications in-

clude target detection using blind channel equalization [4, 5],

blind super-resolution of a two-dimensional (2D) point source

in microscopy [6], and image restoration in medical imaging

[7]. Moreover, (1) is applied in passive indoor source local-

ization to find the locations of R objects by obtaining
(
τ̃j , f̃j

)

and then using this information with anchors’ location.

Prior Works: The recent approach for super-resolution is

based on the atomic norm [8] which provides a framework for

using convex optimization to recover a set of data in the con-

tinuous domain. This framework is applied to obtain shifts

in the continuous domain [0, 1] from low-frequency equally

spaced sequent samples as in [9] or randomly selected sam-

ples as in [10]. Both works are based on 1D super-resolution,

and they show that the exact recovery of the shifts is possible

when they are well-separated. On the other hand, the work in

[11] studies 2D super-resolution in radar where the problem

is formulated using atomic norm. The received signal is mod-

eled as a sum of time-delayed and Doppler-shifted versions

of a known signal. The authors in [12] study super-resolving

ensemble of Diracs on a sphere from their measurements.

On the other hand, the problem of blind deconvolution of

signals from their convolution is an ill-posed problem that re-

quires further constraints to be solved [13]. The authors in

[14] develop an algorithm to blindly deconvolve two signals

lying in known low-dimensional subspaces. This work is ex-

tended in [15] for sparse signals. A convex framework for

estimating a single point function and a spike signal is intro-

duced in [16]. Recently, the authors in [17] study the problem

of estimating the parameters of complex exponentials from

their modulations with unknown waveforms living in a known

low-dimensional subspace. A 1D atomic norm minimization

problem is formulated to obtain the shifts and the waveforms.

Contributions with Connections to Previous Works: In this

paper, we provide a new mathematical framework for blind

2D super-resolution. The 2D term here is based on the fact

that we are super-resolving two continuous unknowns (τ̃j and

f̃j) simultaneously while the blindness of this framework is

because sj (t) are unknown. Since the problem is severely

ill-posed, we assume that sj (t) live in a common known low-

dimensional subspace that satisfies certain randomness and

concentration assumptions. Then, we show that the unknown
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quintuple (R, cj , τ̃j , f̃j, sj (t)) in (1) can be recovered pre-

cisely and with very high probability using y (t) only. This

exact recovery is granted under the assumption that
(
τ̃j , f̃j

)

are well-separated and that the number of the observed sam-

ples is linear up to a log-factor in specific parameters includ-

ing R and the subspace dimension. The recovery problem is

formulated as an atomic norm minimization and is then refor-

mulated and solved via semidefinite programming (SDP).

The model in [11] has the same formula in (1); however,

the waveforms in [11] are identical, known, and have a Gaus-

sian distribution. The work in [17] is a special case of our

approach by assuming that either sj (t) or τ̃j is known. Con-

sidering sj (t− τ̃j) as a single unknown makes the approach

in [17] fails to resolve sj (t) from τ̃j in its final solution. The

fact that there are two unknowns in sj (t− τ̃j) shifts the over-

all problem from 1D to 2D and makes most of the proof tech-

niques and performance guarantee conditions in [17] invalid.

Finally, [16] is a special case of [17] by assuming identical

waveforms. Therefore, our approach is a generalization of

[11, 16, 17]. However, this generalization comes with major

differences. For example, to prove the existence of the solu-

tion of the problem in [17], a 1D polynomial is formulated

using shifted versions of a single kernel. Such formulation

fails in our case as our 2D vector polynomial has to satisfy

certain constraints and thus, multiple kernels are used instead.

Our proof technique allows us also to impose less restricted

assumptions on the low-dimensional subspace than what in

[16, 17]. The non-blindness with the Gaussianity assumption

in [11] simplify the scaler polynomial formulation and make

the proof technique in [11] inapplicable for our case.

2. SYSTEM MODEL AND PROBLEM SOLUTION

To start with, we assume that sj (t) are band-limited periodic

signals with a bandwidth of W and a period of T and that y (t)
is observed over an interval of length T . Based on that, we

can assume that
(
τ̃j , f̃j

)
∈ ([−T/2, T/2] , [−W/2,W/2]).

Now, according to the 2WT -Theorem [18], we can charac-

terize y (t) by sampling it at a rate of 1
W

samples-per-second

to gather L := WT samples. For simplicity, we will assume

that L is an odd number. Upon sampling (1) and then apply-

ing the DFT and the inverse DFT (IDFT), we can show that

y (p) := y (p/W ) =

1

L

R∑

j=1

cj

(
N∑

k=−N

[(
N∑

l=−N

sj (l) e
−i2πkl

L

)
e−i2πτjk

]
e

i2πkp

L

)
×

ei2πfjp, p = −N, . . . , N, N :=
L− 1

2
, (2)

where we set τj :=
τ̃j
T

and fj :=
f̃j
W

. Note that the samples

sj (l) are L periodic and that (τj , fj) ∈ [−1/2, 1/2]2. Due to

the periodicity property, we can assume that (τj , fj) ∈ [0, 1]2.

In this paper, we refer to (τj , fj) by delay-Doppler shift pair.

Based on (2), the number of unknowns is O (RL) which

is much greater than the given samples L. Therefore, the

recovery problem is severely ill-posed and cannot be solved

without imposing extra assumptions. Inspired by [14, 16, 17],

and by defining sj := [sj(−N), . . . , sj(N)], we assume that

all sj belong to a common subspace that is spanned by the

columns of a known matrix D ∈ CL×K such that sj = Dhj

where K ≤ L. Here, D =
[
d−N , . . . ,dN

]H
,dl ∈ C

K×1,
and thus sj (l) = dH

l hj while the unknown orientation vec-

tors hj ∈ CK×1 are assumed to have ||hj ||2 = 1 for all

j. As a result, the number of unknowns reduces to O (RK)
which can be less than L when R,K ≪ L. By substituting

sj (l) = dH
l hj in (2) and then manipulating we obtain

y (p) =

R∑

j=1

cj

N∑

k,l=−N

DN

(
k

L
− fj

)
DN

(
l

L
− τj

)
×

dH
(p−l)hje

i2πpk

L , p = −N, . . . , N, (3)

where DN (t) := 1
L

∑N

r=−N ei2πtr is Dirichlet kernel. Now,

let us define the atoms a (rj) ∈ CL2×1, rj := [τj , fj ]
T with

[a (rj)]((k,l),1) = DN

(
l

L
− τj

)
DN

(
k

L
− fj

)
,

and D̃p ∈ CL2×K such that [D̃p]((k,l),1→K) = e
i2πpk

L dH
(p−l),

p, k, l = −N, . . . , N . Based on that, we can simplify (3) as

y (p) =

R∑

j=1

cja (rj)
H
D̃phj =

〈
U, D̃H

p

〉
= Trace

(
D̃pU

)

(4)

where U :=
∑R

j=1 cjhja (rj)
H

. In practical applications,

R ≪ L and thus U is a sparse linear combination of different

a (rj). By estimating U, we can recover all the unknowns.

Now, to force the sparsity when we estimate U, we suggest

applying the atomic norm [8]. To start with, we define the

atomic set A :=
{
ha (r)H : r ∈ [0, 1]2, ||h||2 = 1,h ∈ CK

}
.

Based on that, the atomic norm of U can be defined as [8]

||U||A = inf
cj∈C,||hj||2=1

rj∈[0,1]2





R∑

j=1

|cj | : U =
R∑

j=1

cjhja (rj)
H





Now, we can formulate our blind super-resolution problem as

minimize
Ũ∈CK×L2

||Ũ||A

subject to : y (p) =
〈
Ũ, D̃H

p

〉
, p = −N, . . . , N. (5)

Next, we discuss the optimality criteria of (5) and its solution.

2.1. Optimality Criteria and Problem Solution

Define X : CK×L2

→ CL as [X (U)]p = Trace
(
D̃pU

)
.

Then, we can relate U to y := [y(−N), . . . , y(N)]T through

y = X (U). Now, the dual of (5) can be shown to be [19]

maximize
q∈CL×1

〈q,y〉R; subject to : ||X ∗ (q) ||∗A ≤ 1, (6)
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where X ∗ : CL → CK×L2

is the adjoint of X , i.e., X ∗ (q) =∑N

p=−N [q]pD̃
H
p while || · ||∗A is the dual of the atomic norm.

Since strong duality holds between (5) and (6) (Slater’s

condition is satisfied), and by denoting the solution of (5) by

Û, then the solutions of (5) and (6) are equal if and only if

Û is the primal optimal and q is the dual optimal. Next, we

show when Û = U based on (6). For that, we can first write

the constraint in (6) based on the definition of || · ||∗A in [8] as

||X ∗ (q) ||∗A = sup
r∈[0,1]2

||X ∗ (q) a (r) ||2 = sup
r∈[0,1]2

||f (r) ||2 (7)

where f (r) := X ∗ (q) a (r) =
∑N

p=−N [q]pD̃
H
p a (r) .

Proposition 1. Define the set R := {rj}
R

j=1 and let sign(cj) =
cj
|cj|

. Then, Û = U is the unique optimal solution to (5) if:

1. There exists a 2D vector polynomial f (r) ∈ CK×1 sat-

isfies

f (rj) = sign (cj)hj , ∀rj ∈ R (8)

||f (r) ||2 < 1, ∀r ∈ [0, 1]2 \ R. (9)

2.







a (rj)

H
D̃−N

...

a (rj)
H
D̃N








R

j=1

is a linearly independent set.

The proof of Proposition 1 is in [20, Appendix B].

To solve (6), we obtain an SDP relaxation for it using

the result in [21]. Upon defining the matrix Q̂ ∈ CK×L2

such that
[
Q̂
]
(i,(p,k))

=
[
1
L
q (p)

∑N

l=−N dle
i2πk(p−l)

L

]
i
, i =

1, . . . ,K, we can show after some algebraic manipulations

that the equivalent SDP relaxation of (6) is given by [20]

maximize
q,Q�0

〈q,y〉R subject to :

[
Q Q̂H

Q̂ IK×K

]
� 0, Trace

((
Θ̃l̃ ⊗ Θ̃k̃

)
Q
)
= δl̃,k̃, (10)

where −(L− 1) ≤ l̃, k̃ ≤ (L− 1) while Θ̃i is L×L Toeplitz

matrix with ones on its i-th diagonal and zeros elsewhere. Fi-

nally, δl̃,k̃ is the Dirac function, i.e., δl̃,k̃ = 0 iff l̃ = k̃ = 0.

The problem in (10) can be solved using any SDP solver.

Then, we formulate f (r) and a function of r and we recover

R by either computing the roots of 1 − ||f (r) ||22 on the unit

circle or by discretizing the domain [0, 1]2 on a fine grid and

then locating rj at which ||f (rj) ||2 = 1 (based on Proposi-

tion 1). In this paper, we use the later approach. Finally, we

can formulate an overdetermined linear system based on (4)

and solve it using the LS algorithm to estimate cjhj .

3. MAIN RESULTS

In this section, we give the main theorem of the paper and its

associated assumptions. We start with the assumptions first.

Assumption 1. We assume that the columns of DH ∈ CK×L

are independent with their entries being independent and that

they can be drawn from any distribution that satisfies

E[dl] = 0K×1, E[dld
H
l ] = IK×K, l = −N, . . . , N.

Assumption 2. (Concentration property) We assume that the

rows of DH , refer to its column form by d̂i ∈ CL×1 such that

i = 1, . . . ,K , are K̃-concentrated with K̃ ≥ 1. That is, there

exist two constants C∗
1 and C∗

2 such that for any 1-Lipschitz

function ϕ : CK → R and any t > 0, it holds that

Pr
[∣∣∣ϕ

(
d̂i

)
− E

[
ϕ
(
d̂i

)]∣∣∣ ≥ t
]
≤ C∗

1 exp
(
−C∗

2 t
2/K̃2

)
.

Assumption 3. The entries of hj are i.i.d. from a uniform

distribution on the complex unit sphere with ||hj ||2 = 1.

Assumption 4. (Minimum separation) We assume that

min
j,j′=1,...,R; j 6=j′

max (|τj − τj′ |, |fj − fj′ |) ≥
2.38

N
, (11)

where |a− b| is the wrap-around distance on the unit circle.

Theorem 1. (Main result) Let y (p) ∈ C be as in (4) with p =
−N, . . . , N and N ≥ 512 and assume that the vectors sj can

be written as sj = Dhj with DH satisfying Assumptions 1

and 2 and hj following Assumption 3. Moreover, define the

set R = {r1, . . . , rR} such that its elements are satisfying

Assumption 4. Then, there exist two numerical constants C1

and C2 such that when

L ≥ C1RKK̃4 log2
(
C2R

2K2L3

δ

)
log2

(
C2(K + 1)L3

δ

)

(12)

is satisfied with δ > 0, U =
∑R

j=1 cjhja (rj)
H

is the optimal

minimizer of (5) with probability at least 1− δ.

3.1. Remarks and Proof Outlines

Many random vectors in practice satisfy the concentration

property in Assumption 2. For example, if the entries of d̂i

are i.i.d. Gaussian, then d̂i is a 1-concentrated vector whereas

if each entry in d̂i is upper bounded by a constant C, then d̂i

is C-concentrated [22]. Thus, it is a more relaxed assumption

than the incoherence property in [17, 16]. Moreover, the min-

imum separation has always been required in super-resolution

theory with different forms to guarantee stable recovery and

to ensure that the problem does not become ill-conditioned.

Theorem 1 gives sufficient condition for the exact recov-

ery. For a given K̃ , (12) shows that L = O (RK) is sufficient

to recover the unknown shifts which coincides with the num-

ber of degrees of freedom in our problem. Finally, N ≥ 512
is a technical assumption that is made to facilitate our proofs

upon following what in [9]. This assumption can be discarded

at the cost of using larger separation as [9] shows. Our sim-

ulations show that exact recovery still exists without this as-

sumption being satisfied.
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The detailed proof of Theorem 1 is given in [20]. The

proof shows that f (r) can be formulated using random kernel

matrices M(m,n) (r, rj) ∈ CK×K ;m,n = 0, 1 and vector

parameters αj ,βj ,γj ∈ CK×1 an that it takes the form

f (r) =

R∑

j=1

M(0,0)(r, rj)αj+M(1,0)(r, rj)βj+M(0,1)(r, rj)γj

4. SIMULATION RESULTS

In this section, we provide some simulation experiments to

illustrate the performance of the proposed framework.

First, we set L = 19, R = 2, K = 2, and we let [D](i,j) ∼
CN (0, 1). The elements of hj are generated from an i.i.d.

CN (0, 1) and are then normalized to have ||hj ||2 = 1. The

locations of the shifts pairs (τj , fj) are generated randomly

from a uniform distribution in [0, 1]2 in accordance with (11)

and found to be (0.28, 0.53) and (0.94, 0.42). Moreover, we

set |cj | = 1with their real and imaginary parts beingN (0, 1).
To estimate the shifts, we discretize the domain [0, 1]2

with a step of 10−3 and then we locate rj where ||f (rj) ||22 =
1. From Fig 1(a), we can see that the two shifts are recovered

perfectly with ||f (r) ||22 < 1, ∀r /∈ R. Looking at Fig 1(a), it

may appear challenging to distinguish the value one from the

values less than but very close to one. Fortunately, our exten-

sive simulations in [20], as well as other foundational works

in the literature such as [9, 10, 17], suggest that the numer-

ical precision of standard numerical optimization tools such

as CVX is sufficient to distinguish them. It remains an open

problem to establish a uniform threshold to distinguish them.

Finally, we point out that as indicated in the literature and

Proposition 1, the duality analysis used here allows identify-

ing the unknown shifts regardless of the power of the signals.

In Fig 1(b), we plot the magnitude of the recovered sam-

ples and we compare them with the true ones. From Fig 1(b),

it is clear that we can retrieve precisely the signals samples.

Finally, we find that |hH
1 ĥ1| = 1 − 10−8 and |hH

2 ĥ2| = 1.0
which confirms the superiority of the proposed framework.

Though the focus of this paper is on the noise-free case,

we follow the practice of the literature such as [17] by adding

simulations for the noisy case to illustrate the stability of the

framework to noise with the theoretical analysis being left to

future work. Here, we set L = 15, R = 1,K = 3, |c1| to be

fading, i.e., 0.5+w2 with w ∼ N (0, 1), and we use the same

settings in the previous scenario for D and h1 and the shifts

with (τ1, f1) found to be (0.74, 0.3). A white Gaussian noise

vector n with SNR = 10 dB is added to y. Then, we solve

minimize
Ũ

||Ũ||A subject to : ||y (p)−
〈
Ũ, D̃H

p

〉
|| ≤ ζ (13)

where ||n||2 ≤ ζ (we set ζ = 3). An SDP is obtained for (13)

and then solved. From Figs 1(c)-(d) we can see that the esti-

mated shift is (0.7370, 0.2980) which is close to the original

one while the recovered samples are close to the original ones

with a tenuous error. Finally, we find that |hH
1 ĥ1| = 0.9674.
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Fig. 1. (a),(c) The locations of the obtained shifts. (b),(d)

Comparing the recovered samples with the true ones.

5. CONCLUSIONS

In this work, we developed a framework for blind 2D super-

resolution. We showed that given a response of a linear sys-

tem to multiple unknown time-delayed and frequency-shifted

waveforms, we could obtain the time-frequency shifts pre-

cisely provided that the shifts are well-separated and that a

bound on the number of the observed samples is satisfied.
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