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ABSTRACT

The identification of nonlinear Wiener models (NWMs) for deter-
ministic inputs and Gaussian noise is studied. We show that the
nonparametric kernel regression estimation of the nonlinearity of
a NWM (based on the Nadaraya-Watson kernel estimator) can be
formulated as a parametric estimation problem leading to a Gaus-
sian conditional observation model. This property allows us to de-
rive the maximum likelihood estimators of the unknown parameters
of the NWM, as well as the associated Cramér-Rao (CR) bounds.
We finally derive a CR-like bound on the global mean squared error
(MSE) of the estimated nonlinearity of a NWM. Numerical results
obtained for a pulse wave input are presented and compared to the
ones based on the Nadaraya-Watson kernel estimator.

Index Terms— Wiener model, non-parametric identification,
Cramér-Rao bound, Maximum Likelihood Estimator, Mean Square
Error.

1. INTRODUCTION

Many nonlinear models such as Wiener and Hammerstein models
are composed by a combination of a linear filter and a static non-
linearity (see Fig. 1) . The combination of these very simple struc-
tures is known to approximate a wide range of nonlinear processes
[1,2, 3, 4]. In particular, these models become particularly attractive
if one considers a general class of nonlinearities that are not assumed
to be parametric and smooth, providing better results than a simple
polynomial of finite order [5]. It is possible to extend even more
their applicability to nonlinear system identification if one assumes
a nonparametric model for the static nonlinearity, as introduced in
[3][6] for nonlinear Wiener models (NWMs) and extended in [3][7]
for noninvertible nonlinearities. A nonparametric identification al-
gorithm was proposed in [7] for NWMs. The convergence of this
algorithm relies on the following assumptions: (i) the input signal
{zn} is asequence of i.i.d. random variables with known probability
density function (pdf) and finite first and second order moments, (ii)
the noise process {z, } is an i.i.d. sequence with zero mean and finite
but unknown variance o2, (iii) the noise {z,} and the input signal
{z,} are mutually independent. The above basic assumptions im-
ply that both the interconnecting signal {w, }' and the output signal
{yn } are second-order stationary stochastic processes.

However in many applications, the input signal x,, is not a se-
quence of i.i.d. random variables, but rather a deterministic time se-

ISystem identification algorithms assume that the input and output se-
quences {x, } and {yn } are available. However, the so-called interconnect-
ing signal {wn, } is not observed.
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Fig. 1. Nonlinear Wiener model.

ries, and the noise sequence {z, } is simply an additive i.i.d. Gaus-
sian noise with zero mean and finite but unknown variance o2. In
this setting, we show that the nonparametric kernel regression es-
timation of the nonlinear function g (.) proposed in [7], i.e., the
Nadaraya-Watson kernel estimator [10], can also be regarded as a
parametric estimation problem, which belongs to the Gaussian con-
ditional observation model [8][9]. Indeed, it amounts to estimating a
parameter vector «y associated with a given nonparametric kernel es-
timator of the nonlinearity g (.), as well as the weights A associated
with the filter relating x,, and w, and the unknown noise variance
o2. By using the well-known Slepian-Bangs formula [16], the first
contribution of this paper is to derive the deterministic Cramér-Rao
(CR) bound (CRB) for the NWM parameters, i.e., v, A and o2. Fur-
thermore, we also derive an asymptotic CR-like bound on the global
mean squared error (MSE) of the estimated nonlinearity g (.;~) for
consistent and locally unbiased estimators of 7. An interesting prop-
erty of this bound is its relation with the mean integrated squared
error (MISE) criterion introduced in [7]. Since we consider a con-
ditional signal model, the maximum likelihood estimators (MLEs)
of the NWM parameters converge to their associated CRBs at high
signal-to-noise-ratio (SNR) [17]. Therefore we derive the associated
MLESs and compare their performance with the estimators proposed
in [7] (based on the Nadaraya-Watson kernel estimator), which are
shown to be sub-optimal when the input signal x,, is not stationary.

2. OBSERVATION MODEL FOR NONPARAMETRIC
WIENER SYSTEM

The nonlinear Wiener model shown in Fig. 1 is defined as

P
Yn = g(wn) + Zn, Wn = ZO /\P‘I:"—p7
p=

1<n<N (1a)

where g (.) is an unknown deterministic function of @ — R, Q C R,
and A = (Ao, A1,...,Ap) € RP+1 is an unknown determinis-
tic vector. It is important to observe that the pairs (g (w),A) and
(g (Mow) , A/Ao) generate the same observations. Indeed, the pair
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(g (w), A) can be identified up to an homothetic transformation af-
fecting g (.). This identifiability problem can be bypassed by assum-
ing Ao = 1, leading to

P
Yn = g(wn) + 2n, Wn =Tn + Y ApZn—p, 1<n <N (1b)

p=1
where A = (A1,...,Ap) € RP. We introduce the following
. T T
notations: 'y = (y1,...,yn) » w = (w1,...,wnN) , g(w) =
(g(wl),...,g(wN))T,z = (z1,...,2N) , X = (wl,...,xN)T,
T

X = (([Elfp, ..

Xo T1—p

IN-P

where y,w, g (w),z,x € RY, x € RV*P, T, € RV*F. The
nonparametric kernel regression estimation proposed in [7], based
on the Nadaraya-Watson kernel estimator of the nonlinearity g (.)
[10], is defined as

2 YiKn (w—wi (X))

1€y

@ =3(w:R), G =g @
Kp (w) = @ ,X:argm}in{ é (Yn — G (wn ()‘)§)\))2},

where w; (A) = x; +Z§:1 ApZj—p, N = card (Ih)+card (Z2)+
2P and K (w) is a positive symmetric function (kernel) such that

ofo Kp (w)dw = ofo K (u)du=1. (2b)

—o0 —o0

Let Gr (y) be the set of parametric functions g (.; «y) defined as

h(w—8,;)
g(w;y) =

é OéiK
B a=(§) e o
> Kn

i=1

From a broader perspective, (2a) can also be regarded as an estimator
of g (.;7) defined in (3) where I = card (Z1), a; = vi, B; =

k3

(w

Bi)

Wi ()\) Therefore the nonparametric kernel regression estimation

of the nonlinearity g (.) defined in (2a) can be recast as a parametric
estimation problem.

2.1. Gaussian Conditional Observation Model

The observation model (1b) can be rewritten as follows

P
zn:yng<mn+ Zx\pxnp>, 1<n<N.
p=1
If x is a known deterministic vector, the pdf of y conditionally on x

with parameters A € R” is

P (yYIx;A) = pz (y — g (x 4+ TxA)) . (4a)

If p, (z) depends on a vector of unknown deterministic parameters
w, then p, (z) £ p, (z; 1) and (4a) becomes

Pyl A p) =pa (y —g(x+TxA); 1) (4b)

At this point, if g (.) £ g (.;v) € Gr (v) and if we consider 87 =
(,uT, AT, '7T), then (4b) becomes

p(¥x;0) = pz (y — g (x+ TxA;v) 5 1) (4c)

where g (.;-y) is an unknown parametric deterministic function.
Finally, if z ~ N (0, 021y) then (4c) is a Gaussian pdf as well and
thus (1b) defines a Gaussian conditional observation model.

3. DETERMINISTIC CRAMER-RAO BOUNDS FOR A
NONPARAMETRIC WIENER SYSTEM

The general theory about lower bounds on the MSE of estimators
of deterministic parameters is detailed in [12, Section II & III][13]
(and summarized in [14, Section II]). In particular, if x is a known
deterministic vector, the inverse CRB of 6 is [16]

9’ Inp (y|x;6)

CRE;" (x) = Fo () = ~Fypo | b V2

} (52)
where Fg (x) is the Fisher information matrix (FIM). Under the hy-
pothesis that y £ y|x ~ N (m(0), C (0)), the FIM (5a) is ob-
tained from the Slepian-Bangs formula [16, (3.31)]

w0, = oo 5
1 _1 0C(0) _,0C(0)
+ 5t (c (6) 0. C (8) 50, ) . (6)

In the Gaussian case considered in this work, 87 = (o2, A", 47,
C(0) = 021y and m () = g (x + Tx ;7). As a consequence,
the FIM of 6 is

%d—]\é 0 0
Fo(x)=| 0 Fa(x) Firy(x)
0 F};-y (x) Fq(x)
1 [0g (x4 TxXiv)\ " 0g (x + TyxA;v)
Fi (x) = o2 ONT AT
1 [0g (x4 TxX:iv)\ " 0g (x + TyxA;v)
Fy(x) = o2 oy oyt
1 (08 (x+TxAiv))" 98 (x+ TxX;7)
Faqy(x) = o2 ONT o~yT

which leads to

CRB;' (x) = Fy (x) - FX, () Fy' (%) Fan (%).

Cl‘B;1 (5) =F.\ (x) —Fx~ (x) F;l (5) Fg;.y (5) o

With a few additional computations, it is easy to show that

g (x+ TyxX;y) _ (98 (x+ TxA;y) 7
T N ( Ow 1P) ©Tx
99 (wiv) _ _ Kn(w—By)
day 25:1 Kn (w—8;)
99 (wiy) _ KW (w—=8,) i (@i —aw) Kn (w — B;)

By (25:1 Kp (w— Bz‘))Q
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where © denotes the Hadamard product, 15 = 1,...,1) € RF,

K,(Ll) (w) = 0K} (w) /Ow and

2N _ (1 ik (- 8)) /(S Kol 8,))
~(SLiED @ 8)) /(S K@ =) g wim).

4. A LOWER BOUND ON THE GLOBAL ESTIMATION
ERROR

The quality of the estimation of g (.;) € Gr () based on the esti-
mator g (.;9) can be measured via the global estimation error

g (5v) —g ()P = é (9 (w;) — g ;7)) dw.  (8)

From a theoretical point of view, (8) is a random variable whose
distribution is difficult to determine in the general case. As a conse-
quence, we consider a simpler performance criterion, i.e., its mean
value which equals the global MSE defined as

C(YA) = Byixo (9 (57) — 9 (53)I]
= [ Eyjxeo [(9 (w;7) — g (w;F))?] dw.  (9)
Q
It is interesting to note that C (v,%) in (9) is the limiting value for

T,L — oo of the MISE performance criterion [7, (28)] (weak law
of large numbers)

MISE@() = 77 3 e i) ~gwr@l* 10
where L is the number of independent observations, Q@ = [a,b],
w¢ = a + %=% (t — 1) is the compact interval containing the pos-

sible values of w, and g (wr; ') = (9 (w1;v') ..., g (wr;vy')".
Under the assumption that ¥ £ 7 (y|x) is a consistent estimator of
~, i.e., provided that § = ~ + d¥ with 3 d5 — 0 when o2 — 0,
then g (w;5) — g (w;vy) — %d’? when o2 — 0 leading to:

A 9 (W;Y) ~ 1oy 99 (W;)
C(vA) rwd é v Cus (%) i dw
_ - 9g (w;~y) 9g (w; )
=tr (Cd., (§)£ o 9T dw ) .

Moreover, if 4 is a locally unbiased estimator of -, then Cg5 (x) >
CRB,, (x) [16] (in the sense that the difference between the two
matrices is positive) and

09 (W57) ~ oy 99 (w;) _ g (w;7) 99 (w; )

which allows us to define the following CR-like bound

= 9g (w; ) 99 (w; )
ClyA) >tr (CRB«, (§)£ oy ey dw). an

5. AN MLE FOR NONPARAMETRIC WIENER SYSTEMS

When ¢ (.) is an unknown parametric deterministic function, i.e.,
g(.) £ g(;7) € G1 (7), the analysis can be conducted by rewriting
(1b) as

Ky, (Wn ()‘) - /31')

LS K () - 6)

M~

Yn = o+ Zn

il

which leads to the well known conditional Gaussian linear model

[81[91[16]

g (x + TxA;7)

0
y=Hx(BNa+z Hx(BA) = 22220 1)

for which the MLE of 87 = (07, A", ~") is

— 1 PN 2
> 1 B ~
Ak = +|v-He(B3)a|
~ 3% _ . 1 2
(8B.3) 0k = arg iy {3 Iy~ He (8Nl ).
Straightforward computations lead to [8][9][16]:

& (vbo) = (He (BN Hx (BN) He(BNy  (13)

(B, 3\) (v]x) = arg max {yTHHé(ﬁ,A)y} (13b)

where ITa = A (ATA) ~" AT, We can observe that the MLE of
o (13a) is different from the ‘“Nadaraya-Watson kernel estimator”
(2a) [7, (11)]. In [17] it is shown that when Uz — 0, the MLEs

a,B, pY (y|x) (13a-13b) are consistent, Gaussian, locally unbi-
ased and efficient (minimum variance). As a consequence, when
o2 — 0, for a given pair (B, X) (y|x), 2)[7, (11)] leads likely
to a biased estimator and sub-optimal (in the MSE sense) com-

pared to the MLE (13a). In a nutshell, the following results can be
obtained asymptotically (when o2 — 0): (i) the proposed MLEs

(64, B, 3\) (y]x) are efficient; (ii) g (.; 7 (y|x)) reaches (11).

6. RESULTS

We consider a synthetic scenario based on a pulse wave input x as
displayed in Fig. 2 (/N = 100), and a dynamical system defined
by A = (1/2,1/2)", a = (6,-2)", B8 = (=1/4,1/4)". A
Gaussian kernel with bandwidth A~ = 1 is considered. The non-
linearity g (.) resulting from this choice is shown in Fig. 2, where
Q = [a,b] = [-20,20] and T" = 800. Note that all the results
presented in this paper have been obtained by averaging L = 5000
Monte Carlo runs. In Fig. 3 and 4 we compare the MSE of the
MLE:s (13a-13b) to the CRBs (7) as a function of the SNR defined
as SNR = (& |lg (x + TxX;v)||?) /o2. Fig. 3 also compares the
performance of two estimators of A, i.e., the MLE defined in (13b)
and Pawlak’s estimator defined in (2a) where card (Z1) = 51 and
card (Zz) = 47. We can observe that the MLEs (13a-13b) converge
to the CRBs (7) when the SNR increases, as expected [17]. More-
over, we can note that the MLE outperforms the kernel estimator of
g (.) proposed in [7]. Fig. 5 displays the estimated global estimation
error, i.e. MISE(g (.)), of the two estimators versus SNR, which is
compared with the proposed CR-like bound (11). As already men-
tioned for the estimation of A, the global estimation error of the MLE
converges to the bound and outperforms the kernel estimator(2a)[7],
which can also be observed in Fig. 6 showing the estimator of the
nonlinearity g (.) in both cases (for a given SNR), with a biased ker-
nel estimator, as anticipated.

7. CONCLUSIONS

This paper addressed the nonlinear system identification problem for
nonparametric Wiener models. The deterministic CRBs, the MLE
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Fig. 2. Input signal z (left) and non linearity g(.) (right)
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Fig. 3. MSEs of the MLE (13b) and of Pawlak’s estimator (2a) for
X versus SNR, and the corresponding CRB(A) (7).
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Fig. 4. MSE of the MLEs of (a, 3) (13a-13b) versus SNR, and the
corresponding CRB (e, 3) (7).
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Fig. 5. MISE(g(.)) (10) of the MLE (13a-13b) and of Pawlak’s
estimator (2a) versus SNR, compared with the lower bound (11).
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Fig. 6. Estimated nonlinearity g (.) obtained with the MLEs (13a-
13b, in black) and Pawlak’s estimators (2a, in red) of (A, a, 3),
compared to the ground truth g (.) (in blue) at SN R = 52dB.

and an asymptotic CR-like bound for the global estimation error
of the estimated nonlinearity were derived for this problem. Some
simulation results confirmed that the maximum likelihood estima-
tor of the nonlinearity has a global estimation error closer to the
corresponding Cramér-Rao bound than an existing kernel estimator,
which was designed for i.i.d. random input signals [7]. Based on the
obtained results, further studies can be carried out to evaluate the op-
timal input signal for Wiener system identification and the influence
of the bandwidth parameter h and/or the kernel type on the MLE
performance.
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