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ABSTRACT

The identification of nonlinear Wiener models (NWMs) for deter-
ministic inputs and Gaussian noise is studied. We show that the
nonparametric kernel regression estimation of the nonlinearity of
a NWM (based on the Nadaraya-Watson kernel estimator) can be
formulated as a parametric estimation problem leading to a Gaus-
sian conditional observation model. This property allows us to de-
rive the maximum likelihood estimators of the unknown parameters
of the NWM, as well as the associated Cramér-Rao (CR) bounds.
We finally derive a CR-like bound on the global mean squared error
(MSE) of the estimated nonlinearity of a NWM. Numerical results
obtained for a pulse wave input are presented and compared to the
ones based on the Nadaraya-Watson kernel estimator.

Index Terms— Wiener model, non-parametric identification,
Cramér-Rao bound, Maximum Likelihood Estimator, Mean Square
Error.

1. INTRODUCTION

Many nonlinear models such as Wiener and Hammerstein models
are composed by a combination of a linear filter and a static non-
linearity (see Fig. 1) . The combination of these very simple struc-
tures is known to approximate a wide range of nonlinear processes
[1, 2, 3, 4]. In particular, these models become particularly attractive
if one considers a general class of nonlinearities that are not assumed
to be parametric and smooth, providing better results than a simple
polynomial of finite order [5]. It is possible to extend even more
their applicability to nonlinear system identification if one assumes
a nonparametric model for the static nonlinearity, as introduced in
[3][6] for nonlinear Wiener models (NWMs) and extended in [3][7]
for noninvertible nonlinearities. A nonparametric identification al-
gorithm was proposed in [7] for NWMs. The convergence of this
algorithm relies on the following assumptions: (i) the input signal
{xn} is a sequence of i.i.d. random variables with known probability
density function (pdf) and finite first and second order moments, (ii)
the noise process {zn} is an i.i.d. sequence with zero mean and finite
but unknown variance σ2

z , (iii) the noise {zn} and the input signal
{xn} are mutually independent. The above basic assumptions im-
ply that both the interconnecting signal {ωn}1 and the output signal
{yn} are second-order stationary stochastic processes.

However in many applications, the input signal xn is not a se-
quence of i.i.d. random variables, but rather a deterministic time se-

1System identification algorithms assume that the input and output se-
quences {xn} and {yn} are available. However, the so-called interconnect-
ing signal {ωn} is not observed.

Fig. 1. Nonlinear Wiener model.

ries, and the noise sequence {zn} is simply an additive i.i.d. Gaus-
sian noise with zero mean and finite but unknown variance σ2

z . In
this setting, we show that the nonparametric kernel regression es-
timation of the nonlinear function g (.) proposed in [7], i.e., the
Nadaraya-Watson kernel estimator [10], can also be regarded as a
parametric estimation problem, which belongs to the Gaussian con-
ditional observation model [8][9]. Indeed, it amounts to estimating a
parameter vector γ associated with a given nonparametric kernel es-
timator of the nonlinearity g (.), as well as the weights λ associated
with the filter relating xn and ωn and the unknown noise variance
σ2
z . By using the well-known Slepian-Bangs formula [16], the first

contribution of this paper is to derive the deterministic Cramér-Rao
(CR) bound (CRB) for the NWM parameters, i.e., γ, λ and σ2

z . Fur-
thermore, we also derive an asymptotic CR-like bound on the global
mean squared error (MSE) of the estimated nonlinearity g (.;γ) for
consistent and locally unbiased estimators of γ. An interesting prop-
erty of this bound is its relation with the mean integrated squared
error (MISE) criterion introduced in [7]. Since we consider a con-
ditional signal model, the maximum likelihood estimators (MLEs)
of the NWM parameters converge to their associated CRBs at high
signal-to-noise-ratio (SNR) [17]. Therefore we derive the associated
MLEs and compare their performance with the estimators proposed
in [7] (based on the Nadaraya-Watson kernel estimator), which are
shown to be sub-optimal when the input signal xn is not stationary.

2. OBSERVATION MODEL FOR NONPARAMETRIC
WIENER SYSTEM

The nonlinear Wiener model shown in Fig. 1 is defined as

yn = g (ωn) + zn, ωn =
P∑
p=0

λpxn−p, 1 ≤ n ≤ N (1a)

where g (.) is an unknown deterministic function of Ω→ R, Ω ⊂ R,
and λ = (λ0, λ1, . . . , λP ) ∈ RP+1 is an unknown determinis-
tic vector. It is important to observe that the pairs (g (ω) ,λ) and
(g (λ0ω) ,λ/λ0) generate the same observations. Indeed, the pair
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(g (ω) ,λ) can be identified up to an homothetic transformation af-
fecting g (.). This identifiability problem can be bypassed by assum-
ing λ0 = 1, leading to

yn = g (ωn) + zn, ωn = xn +
P∑
p=1

λpxn−p, 1 ≤ n ≤ N (1b)

where λ = (λ1, . . . , λP ) ∈ RP . We introduce the following
notations: y = (y1, . . . , yN )T , ω = (ω1, . . . , ωN )T , g (ω) =

(g (ω1) , . . . , g (ωN ))T , z = (z1, . . . , zN )T , x = (x1, . . . , xN )T ,
x =

(
(x1−P , . . . , x0) ,xT

)T
, and

Tx =

 x0 . . . x1−P
...

...
...

xN−1 . . . xN−P


where y,ω,g (ω), z,x ∈ RN , x ∈ RN+P , Tx ∈ RN×P . The
nonparametric kernel regression estimation proposed in [7], based
on the Nadaraya-Watson kernel estimator of the nonlinearity g (.)
[10], is defined as

ĝ (ω) = ĝ
(
ω; λ̂

)
, ĝ (ω;λ) =

∑
i∈I1

yiKh (ω − ωi (λ))∑
i∈I1

Kh (ω − ωi (λ))
, (2a)

Kh (ω) =
K(ω

h
)

h
, λ̂ = arg min

λ

{ ∑
n∈I2

(yn − ĝ (ωn (λ) ;λ))2

}
,

where ωj (λ) = xj+
∑P
p=1 λpxj−p,N = card (I1)+card (I2)+

2P and K(ω) is a positive symmetric function (kernel) such that

∞∫
−∞

Kh (ω) dω =
∞∫
−∞

K (u) du = 1. (2b)

Let GI (γ) be the set of parametric functions g (.;γ) defined as

g (ω;γ) =

I∑
i=1

αiKh (ω − βi)

I∑
i=1

Kh (ω − βi)
, γ =

(
α
β

)
∈ R2I . (3)

From a broader perspective, (2a) can also be regarded as an estimator
of g (.;γ) defined in (3) where I = card (I1), α̂i = yi, β̂i =

ωi
(
λ̂
)

. Therefore the nonparametric kernel regression estimation

of the nonlinearity g (.) defined in (2a) can be recast as a parametric
estimation problem.

2.1. Gaussian Conditional Observation Model

The observation model (1b) can be rewritten as follows

zn = yn − g

(
xn +

P∑
p=1

λpxn−p

)
, 1 ≤ n ≤ N.

If x is a known deterministic vector, the pdf of y conditionally on x
with parameters λ ∈ RP is

p (y|x;λ) = pz (y − g (x + Txλ)) . (4a)

If pz (z) depends on a vector of unknown deterministic parameters
µ, then pz (z) , pz (z;µ) and (4a) becomes

p (y|x;λ,µ) = pz (y − g (x + Txλ) ;µ) . (4b)

At this point, if g (.) , g (.;γ) ∈ GI (γ) and if we consider θT =(
µT ,λT ,γT

)
, then (4b) becomes

p (y|x;θ) = pz (y − g (x + Txλ;γ) ;µ) (4c)

where g (.;γ) is an unknown parametric deterministic function.
Finally, if z ∼ N

(
0, σ2

zIN
)

then (4c) is a Gaussian pdf as well and
thus (1b) defines a Gaussian conditional observation model.

3. DETERMINISTIC CRAMÉR-RAO BOUNDS FOR A
NONPARAMETRIC WIENER SYSTEM

The general theory about lower bounds on the MSE of estimators
of deterministic parameters is detailed in [12, Section II & III][13]
(and summarized in [14, Section II]). In particular, if x is a known
deterministic vector, the inverse CRB of θ is [16]

CRB−1
θ (x) = Fθ (x) = −Ey|x;θ

[
∂2 ln p (y|x;θ)

∂θ∂θT

]
(5a)

where Fθ (x) is the Fisher information matrix (FIM). Under the hy-
pothesis that y , y|x ∼ N (m (θ) ,C (θ)), the FIM (5a) is ob-
tained from the Slepian-Bangs formula [16, (3.31)]

(Fθ)i,j =
∂m (θ)T

∂θi
C (θ)−1 ∂m (θ)

∂θj

+
1

2
tr

(
C (θ)−1 ∂C (θ)

∂θi
C (θ)−1 ∂C (θ)

∂θj

)
. (6)

In the Gaussian case considered in this work, θT =
(
σ2
z,λ

T ,γT
)
,

C (θ) = σ2
zIN and m (θ) = g (x + Txλ;γ). As a consequence,

the FIM of θ is

Fθ (x) =

 1
2
N
σ4
z

0 0

0 Fλ (x) Fλ,γ (x)
0 FTλ,γ (x) Fγ (x)


Fλ (x) =

1

σ2
z

(
∂g (x + Txλ;γ)

∂λT

)T
∂g (x + Txλ;γ)

∂λT

Fγ (x) =
1

σ2
z

(
∂g (x + Txλ;γ)

∂γT

)T
∂g (x + Txλ;γ)

∂γT

Fλ,γ (x) =
1

σ2
z

(
∂g (x + Txλ;γ)

∂λT

)T
∂g (x + Txλ;γ)

∂γT

which leads to

CRB−1
λ (x) = Fλ (x)− Fλ,γ (x) F−1

γ (x) FTλ,γ (x)

CRB−1
γ (x) = Fγ (x)− FTλ,γ (x) F−1

λ (x) Fλ,γ (x) .
(7)

With a few additional computations, it is easy to show that

∂g (x + Txλ;γ)

∂λT
=

(
∂g (x + Txλ;γ)

∂ω
1TP

)
�Tx

∂g (ω;γ)

∂αi′
=

Kh (ω − βi′)∑I
i=1 Kh (ω − βi)

∂g (ω;γ)

∂βi′
= K

(1)
h (ω − βi′)

∑I
i=1 (αi − αi′)Kh (ω − βi)(∑I

i=1 Kh (ω − βi)
)2
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where � denotes the Hadamard product, 1TP = (1, . . . , 1) ∈ RP ,
K

(1)
h (ω) = ∂Kh (ω) /∂ω and

∂g (ω;γ)

∂ω
=
(∑I

i=1 αiK
(1)
h (ω − βi)

)
/
(∑I

i=1 Kh (ω − βi)
)

−
(∑I

i=1 K
(1)
h (ω − βi)

)
/
(∑I

i=1 Kh (ω − βi)
)
g (ω;γ) .

4. A LOWER BOUND ON THE GLOBAL ESTIMATION
ERROR

The quality of the estimation of g (.;γ) ∈ GI (γ) based on the esti-
mator g (.; γ̂) can be measured via the global estimation error

‖g (.;γ)− g (.; γ̂)‖2 =
∫
Ω

(g (ω;γ)− g (ω; γ̂))2 dω. (8)

From a theoretical point of view, (8) is a random variable whose
distribution is difficult to determine in the general case. As a conse-
quence, we consider a simpler performance criterion, i.e., its mean
value which equals the global MSE defined as

C (γ,γ̂) = Ey|x;θ

[
‖g (.;γ)− g (.; γ̂)‖2

]
=
∫
Ω

Ey|x;θ

[
(g (ω;γ)− g (ω; γ̂))2] dω. (9)

It is interesting to note that C (γ,γ̂) in (9) is the limiting value for
T,L → ∞ of the MISE performance criterion [7, (28)] (weak law
of large numbers)

MISE (ĝ (.)) =
1

LT

L∑
l=1

‖g (ωT ;γ)− g (ωT ; γ̂l)‖
2 (10)

where L is the number of independent observations, Ω = [a, b],
ωt = a + b−a

T
(t− 1) is the compact interval containing the pos-

sible values of ω, and g (ωT ;γ′) = (g (ω1;γ′) , . . . , g (ωT ;γ′))
T .

Under the assumption that γ̂ , γ̂ (y|x) is a consistent estimator of
γ, i.e., provided that γ̂ = γ + dγ̂ with dγ̂T dγ̂ → 0 when σ2

z → 0,
then g (ω; γ̂)− g (ω;γ)→ ∂g(ω;γ)

∂γT dγ̂ when σ2
z → 0 leading to:

C (γ,γ̂) −→
σ2
z→0

∫
Ω

∂g (ω;γ)

∂γT
Cdγ̂ (x)

∂g (ω;γ)

∂γ
dω

= tr

(
Cdγ̂ (x)

∫
Ω

∂g (ω;γ)

∂γ

∂g (ω;γ)

∂γT
dω

)
.

Moreover, if γ̂ is a locally unbiased estimator of γ, then Cdγ̂ (x) ≥
CRBγ (x) [16] (in the sense that the difference between the two
matrices is positive) and

∂g (ω;γ)

∂γT
Cdγ̂ (x)

∂g (ω;γ)

∂γ
≥ ∂g (ω;γ)

∂γT
CRBγ (x)

∂g (ω;γ)

∂γ

which allows us to define the following CR-like bound

C (γ,γ̂) ≥ tr
(

CRBγ (x)
∫
Ω

∂g (ω;γ)

∂γ

∂g (ω;γ)

∂γT
dω

)
. (11)

5. AN MLE FOR NONPARAMETRIC WIENER SYSTEMS

When g (.) is an unknown parametric deterministic function, i.e.,
g (.) , g (.;γ) ∈ GI (γ), the analysis can be conducted by rewriting
(1b) as

yn =
I∑

i′=1

Kh (ωn (λ)− βi′)
I∑
i=1

Kh (ωn (λ)− βi)
αi′ + zn

which leads to the well known conditional Gaussian linear model
[8][9][16]

y = Hx (β,λ)α+ z, Hx (β,λ) =
∂g (x + Txλ;γ)

∂αT
, (12)

for which the MLE of θT =
(
σ2
z,λ

T ,γT
)

is

σ̂2
z (y|x) =

1

N

∥∥∥y −Hx

(
β̂, λ̂

)
α̂
∥∥∥2

(
α̂, β̂, λ̂

)
(y|x) = arg min

α,β,λ

{
1

N
‖y −Hx (β,λ)α‖2

}
.

Straightforward computations lead to [8][9][16]:

α̂ (y|x) =
(
Hx (β,λ)T Hx (β,λ)

)−1

Hx (β,λ)T y (13a)(
β̂, λ̂

)
(y|x) = arg max

β,λ

{
yTΠHx(β,λ)y

}
(13b)

where ΠA = A
(
ATA

)−1
AT . We can observe that the MLE of

α (13a) is different from the “Nadaraya-Watson kernel estimator”
(2a) [7, (11)]. In [17] it is shown that when σ2

z → 0, the MLEs(
α̂, β̂, λ̂

)
(y|x) (13a-13b) are consistent, Gaussian, locally unbi-

ased and efficient (minimum variance). As a consequence, when
σ2
z → 0, for a given pair

(
β̂, λ̂

)
(y|x), (2a)[7, (11)] leads likely

to a biased estimator and sub-optimal (in the MSE sense) com-
pared to the MLE (13a). In a nutshell, the following results can be
obtained asymptotically (when σ2

z → 0): (i) the proposed MLEs(
α̂, β̂, λ̂

)
(y|x) are efficient; (ii) g (.; γ̂ (y|x)) reaches (11).

6. RESULTS

We consider a synthetic scenario based on a pulse wave input x as
displayed in Fig. 2 (N = 100), and a dynamical system defined
by λ = (1/2, 1/2)T , α = (6,−2)T , β = (−1/4, 1/4)T . A
Gaussian kernel with bandwidth h = 1 is considered. The non-
linearity g (.) resulting from this choice is shown in Fig. 2, where
Ω = [a, b] = [−20, 20] and T = 800. Note that all the results
presented in this paper have been obtained by averaging L = 5000
Monte Carlo runs. In Fig. 3 and 4 we compare the MSE of the
MLEs (13a-13b) to the CRBs (7) as a function of the SNR defined
as SNR =

(
1
N
‖g (x + Txλ;γ)‖2

)
/σ2

z . Fig. 3 also compares the
performance of two estimators of λ, i.e., the MLE defined in (13b)
and Pawlak’s estimator defined in (2a) where card (I1) = 51 and
card (I2) = 47. We can observe that the MLEs (13a-13b) converge
to the CRBs (7) when the SNR increases, as expected [17]. More-
over, we can note that the MLE outperforms the kernel estimator of
g (.) proposed in [7]. Fig. 5 displays the estimated global estimation
error, i.e. MISE(ĝ (.)), of the two estimators versus SNR, which is
compared with the proposed CR-like bound (11). As already men-
tioned for the estimation ofλ, the global estimation error of the MLE
converges to the bound and outperforms the kernel estimator(2a)[7],
which can also be observed in Fig. 6 showing the estimator of the
nonlinearity g (.) in both cases (for a given SNR), with a biased ker-
nel estimator, as anticipated.

7. CONCLUSIONS

This paper addressed the nonlinear system identification problem for
nonparametric Wiener models. The deterministic CRBs, the MLE
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Fig. 2. Input signal x (left) and non linearity g(.) (right)

Fig. 3. MSEs of the MLE (13b) and of Pawlak’s estimator (2a) for
λ versus SNR, and the corresponding CRB(λ) (7).

Fig. 4. MSE of the MLEs of (α,β) (13a-13b) versus SNR, and the
corresponding CRB (α,β) (7).

Fig. 5. MISE(ĝ (.)) (10) of the MLE (13a-13b) and of Pawlak’s
estimator (2a) versus SNR, compared with the lower bound (11).

Fig. 6. Estimated nonlinearity ĝ (.) obtained with the MLEs (13a-
13b, in black) and Pawlak’s estimators (2a, in red) of (λ,α,β),
compared to the ground truth g (.) (in blue) at SNR = 52dB.

and an asymptotic CR-like bound for the global estimation error
of the estimated nonlinearity were derived for this problem. Some
simulation results confirmed that the maximum likelihood estima-
tor of the nonlinearity has a global estimation error closer to the
corresponding Cramér-Rao bound than an existing kernel estimator,
which was designed for i.i.d. random input signals [7]. Based on the
obtained results, further studies can be carried out to evaluate the op-
timal input signal for Wiener system identification and the influence
of the bandwidth parameter h and/or the kernel type on the MLE
performance.
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