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1 École Normale Supérieure, PSL, 75005, Paris, France
2 Science & Finance, Capital Fund Management, 75009, Paris, France
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ABSTRACT
Modeling time series with complex statistical properties such
as heavy-tails, long-range dependence, and temporal asym-
metries remains an open problem. In particular, financial time
series exhibit such properties. Existing models suffer from
serious limitations and often rely on high-order moments.
We introduce a wavelet-based maximum entropy model for
such random processes, based on new scattering and phase-
harmonic moments. We analyze the model’s performance
with a synthetic multifractal random process and real-world
financial time series. We show that scattering moments cap-
ture heavy tails and multifractal properties without estimating
high-order moments. Further, we show that additional phase-
harmonic terms capture temporal asymmetries.

Index Terms— Maximum entropy models, scattering
transform, wavelets, financial time series

1. INTRODUCTION

Stochastic process modeling. In a wide range of domains,
such as internet traffic [1], turbulence [2] and medicine [3],
data are characterized by complex statistical properties such
as heavy-tailed distributions, long-range correlations, inter-
mittent time evolutions, and temporal asymmetries due to
causality effects. Despite the prevalence of such data, state-
of-the-art stochastic models often struggle to represent all
these types of behavior.
Financial time series. A case study of the above situation is
provided by financial time series, consisting in the evolution
of prices of different assets over time. The development of ac-
curate models for such time series is a crucial task in finance,
for prediction or to understand mechanisms that control the
dynamics of financial markets. However, financial time se-
ries have the complex statistical properties described above,
which current models fail to characterize completely [4, 5].
Financial models. Initial gaussian models, based on brow-
nian motions, were unable to capture neither heavy-tails nor
the complex temporal dependences (for instance, the alterna-
tion of periods of large and small changes known as “volatility
clustering” [5], see Fig. 1).
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GARCH models were introduced to address these limi-
tations [6, 7] through autoregressive components of volatil-
ity that capture the temporal dependence. Despite many im-
provements and variations [8], GARCH models still suffer
from issues such as difficulties to represent the interactions
between price changes at different time scales, or to capture
heavy-tailed distributions [5].

Multifractal models were proposed to address limitations
of GARCH [5, 9]. They specify the evolution of all moments
at different time scales. Interscale relationships are captured,
and imposing high-order moments leads to heavy-tailed dis-
tributions and volatility clustering [5,10,11]. However, multi-
fractal quantities are based on high-order moments which are
computed with estimators having a large variance. Accurate
estimation of high-order moments often requires much more
data than what is available. High-order moments also do not
capture temporal asymmetries.
Modeling challenges. Accurate stochastic models for com-
plex time-series are required to satisfy the following four
properties [4, 5, 11–15]:

1. Compute estimators having a small variance,

2. Capture interactions between scales,

3. Recover intermittent temporal structure,

4. Specify temporal asymmetries.

Goals and contributions. We introduce a maximum entropy
model based on moment estimators which satisfy the four
properties above. We define estimators with a small variance
by estimating a reduced number of second-order moments of
a nonlinear contractive representation. We capture interscale
relationships with wavelet transforms which separate signal
variations at different scales. Intermittent temporal evolutions
are captured by scattering coefficients, which are sufficient
to model heavy tails and multifractal properties. Temporal
asymmetries are specified by wavelet phase harmonics at dif-
ferent scales.

Numerical results show that this model captures heavy
tails, multifractal properties and temporal asymmetries of
synthetic multifractal random processes as well real financial
time series, without estimating high-order moments.
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2. STATISTICAL PROPERTIES OF FINANCIAL
TIME SERIES

Notation. Throughout the paper, X(t) denotes a 1D random
process, and x a realization of X with d time samples. Fur-
ther, 〈x(t)〉 = d−1

∑
t x(t) denotes the empirical average.

Financial returns. Let c(t) be the price of an asset at time
t. The absolute returns at scale δ are defined as r(t) = c(t)−
c(t− δ). We shall use of the daily returns (i.e. δ = 1 day) of
the S&P 500 index between the years 2000 and 2018, illus-
trated in Fig. 1. Returns have heavy tails, multifractal struc-
ture, and temporal asymmetries [4, 5].
Heavy tails. It has been empirically shown that the proba-
bility distribution of returns r is nongaussian and decays as a
power law when δ is not too large [4, 12]:

p(r) ∼ r−α, r →∞, where 3 ≤ α ≤ 5. (1)

The probability of observing extreme returns is higher than
what is predicted by a normal distribution. We denote P (r)
the corresponding cumulative distribution function (cdf).
Multifractal structure. Empirical analyses also show that
returns are scale invariant, have nongaussian high-order
statistics, and are everywhere irregular with intermittent
changes of regularity [4, 5, 11]. Multifractal analysis sum-
marizes these properties through a scaling function ζ(q),
defined for all moments of order q ∈ R by

〈|x(t+ a)− x(t)|q〉 ∼ aζ(q). (2)

The function ζ(q) specifies the evolutions of moments across
scales. It is related to heavy tails, long-range correlations and
volatility clustering [5, 9, 16]. Numerically, the increments in
(2) are replaced by more robust estimators such as wavelet
leaders [17].
Multifractal random walk. Multifractal random walk
(MRW) [9, 18] has been introduced to model financial time
series. An MRW is defined as X(t) = B(t)eωλ(t), where
B(t) is white gaussian noise and ωλ(t) is a stationary gaus-
sian process whose covariance has a slow decay up to an inte-
gral scale T : cov(ω(t1), ω(t2)) = λ2 log (T/|t1 − t2|+ 1) if
|t1− t2| ≤ T , and cov(ω(t1), ω(t2)) = 0 otherwise. A MRW
captures heavy tails and multifractal structure; its scaling
function is ζ(q) = (λ2 + 1/2)q − λ2q2/2. A sample realiza-
tion of MRW is shown in Fig. 2, and its statistical properties
are shown in Fig. 3 (black lines).
Temporal asymmetries. Temporal asymmetries in financial
time series arise from causality relationships, whereby eco-
nomic actors anticipate events in the future using information
from the past, see [19]. The strongest stigma of such asym-
metries in financial markets is the leverage effect, which re-
flects the tendency for increased volatility after decreases in
price [20]. It can be defined as the correlation between price
change and a measure of the square volatility [20]:

L(τ) =
〈r2(t+ τ) r(t)〉
〈r2δ(t)〉2

. (3)

Fig. 1. S&P 500 daily absolute returns time series.

Fig. 2. Single realization of multifractal random walk.

The leverage L(τ) has been found to be 0 for τ < 0, and a
negative exponential for τ > 0 [20].
Contribution. This paper defines models of stochastic
processes that capture properties (1), (2) and (3) with low-
variance estimators, hence not based on high-order moments.

3. MAXIMUM ENTROPY MODELS

Low-variance moment estimators. We build maximum en-
tropy models that are conditioned on empirical moments com-
puted from a single realization x of X . These moments are
covariance coefficients of a contractive representation UX of
X . We define a vector of time series Ux(t) = {U`x(t)}`
which is contractive for all signals x and x′ in the sense that:∑

`

∑
t

|U`x(t)− U`x′(t)|2 ≤
∑
t

|x(t)− x′(t)|2, (4)

i.e. U preserves or reduces distances.
The covariance of UX is estimated from a single realiza-

tion x by computing the empirical means µ` = 〈U`x〉 and the
empirical covariances relatively to this mean

C`,`′x = 〈(U`x− µ`) (U`′x− µ`′)∗〉. (5)

The contraction guaranties that UX reduces the variability
of X and hence that these covariance estimators have a vari-
ance dominated by the variance of second order moments of
X . We estimate a minimum subset of covariance coefficients
C`,`′x for few indices (`, `′) ∈ C to again reduce the estima-
tion variance. Sections 4 and 5 explain how to choose of U
and C while restoring the important properties of X .
Sampling microcanonical models. A microcanonical
model is a maximum entropy model conditioned by em-
pirical moments computed from a single realization x. For
covariance moments, it is a uniform probability distribution
over a set of signals x̃ such that Ux̃ has nearly the same
empirical covariance in as Ux over C:

E(x, x̃) =
∑

(`,`′)∈C

|C`,`′x− C`,`′ x̃|2 ≤ ε . (6)

We sample this probability distribution with a gradient de-
scent algorithm whose properties are studied in [21]. It be-
gins from x0 sampled from a maximum entropy distribution,
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hence a gaussian white noise. The covariance error (6) is min-
imized by a gradient descent which updates x0 until it reaches
an x̃ which yields a covariance error below a small ε.

4. SCATTERING MOMENTS

4.1. Scattering representation

Wavelet transform. To analyze long-range-dependent pro-
cesses such as financial time series, we separate variabili-
ties at different scales with a wavelet transform. Let ψ be
a mother wavelet, a band-pass filter with

∫
ψ(t)dt = 0 that is

well localized in both time and frequency. A dyadic wavelet
filter bank is obtained by scaling ψ at scales 2j : ψj(t) =
2−jψ(2−jt) for 1 ≤ j < J . Low-frequency information is
captured by a low-pass filter ψJ at the maximum scale 2J .
The wavelet coefficients x ? ψj(t) compute variations of x at
different scales 2j . [22].
Scattering moments. Nongaussian processes often have in-
termittent bursts of activity as in Figs. 1 and 2, which appear
through wavelet coefficients of higher amplitude |x?ψj |. The
distribution of these bursts is characterized by computing the
multiscale variations of |x ? ψj |, through convolutions with a
new family of wavelets:

U`x = |x ? ψj | ? ψj′ with ` = (j, j′), (7)

where 1 ≤ j < j′ ≤ J . For appropriate wavelets, it defines a
contractive representation in the sense of (4) [22].

If j′ < J then wavelets have zero average so 〈|x ? ψj | ?
ψj′〉 = 0. The only non-zero empirical means correspond to
j′ = J and can be written as l1 norms of wavelet coefficients

µ` = 〈|x ? ψj | ? ψJ〉 = 〈|x ? ψj |〉 = ‖x ? ψj‖1. (8)

A scattering transform only computes the diagonal covari-
ance coefficients. Second order scattering coefficients can be
rewritten as squared l2 norms

C`,`x = 〈||x ? ψj | ? ψj′ |2〉 = ‖|x ? ψj | ? ψj′‖22. (9)

4.2. Numerical results

Setup. The daily S&P 500 time series used for simulations
has d = 212 samples. 100 realizations of MRW were syn-
thesized with length d = 212, and parameters H = 0.5,
λ =

√
0.05 and T = d. Morlet wavelets were used, with

1 voice per octave and J = 9 octaves. The L-BFGS-M algo-
rithm was used to perform the gradient descent, with a toler-
ance ε = 10−10. Results show averages over 100 reconstruc-
tions from S& P 500 time series, and 1 reconstruction for each
realization of MRW.
Multifractal random walk. Figure 3 (top) shows a recon-
structed realization of MRW. A comparison with Fig. 2 shows
that the irregular, intermittent temporal structure is satisfac-
torily captured by scattering moments. The bottom row of

Fig. 3. MRW: scattering reconstruction. Top: example
of reconstruction. Bottom, left to right: multifractal scaling
function ζ(q), cdf P (x), and leverage Lτ , for the original
MRW (black) and reconstructions (red).

Fig. 3 shows the scaling function ζ, the cdf P and the lever-
age L of the original and reconstructed signals. The estimates
for ζ and P computed from reconstructions and originals are
remarkably close, suggesting that a second-order scattering
representation captures well the heavy-tailed, multifractal na-
ture of MRW. The high-order moments of multifractals are
completely recovered using only second-order scattering mo-
ments, confirming observations in [23].

Since the white B and correlated ωλ are independent, the
leverage correlation of a MRW model is 0 and thus does not
reflect the causality properties of financial time-series. The
right bottom graph shows that the scattering model also has a
0 leverage, up to random variations of the estimator. Indeed,
the scattering means (8) and covariances (9) does not incor-
porate any phase information. These coefficients remain the
same if time is reversed by transforming x(t) in x(−t).
Financial time series. Figure 4 (top) shows a reconstructed
realization of the S&P 500 daily returns. Comparison with
Fig. 1 again shows that the temporal intermittency and gen-
eral shape are correctly reflected. Inspection of the multi-
fractal properties and cdf in Fig. 4 (bottom left and right, re-
spectively) shows that reconstructions correctly capture both
statistical properties. However, the scattering model has no
temporal asymmetry, as shown by the leverage L which is
nearly zero, at the bottom right of Fig. 4, as opposed to the
case of real financial series.

5. JOINT SCATTERING AND PHASE HARMONIC
MOMENTS

5.1. Phase-harmonic representation

Multiscale phase correlations. To capture temporal asym-
metries, it is necessary to use quantities that preserve their
phase, and to measure their interactions at different scales.
The correlation 〈x ? ψj x ? ψj′〉 is nearly zero since the sup-
ports of the Fourier transforms ψ̂j and ψ̂j′ barely overlap.
Phase-harmonics are non-linear transformations of the phase,
providing non-zero correlations across scales.
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Fig. 4. Financial time series: scattering reconstruction.
Top: example of reconstruction. Bottom, left to right: multi-
fractal scaling function ζ(q), cdf P (x), and leverage Lτ , for
the original S&P 500 data (black) and reconstructions (red).

Wavelet phase harmonics. Let ϕ(z) denote the phase of
z ∈ C. Wavelet phase harmonics are defined in [24] by

∀k ∈ Z, [x ? ψj ]
k = |x ? ψj |eikϕ(x?ψj). (10)

Wavelet phase harmonics [x ? ψj ]k thus have the same mod-
ulus as x ? ψj , but their phase is amplified by a factor k.

The Fourier transform of x ? ψj is x̂ ψ̂j . Multiplying
the phase by a factor k also multiplies all frequencies by k.
This nonlinear transformation essentially dilates the Fourier
support of x̂ ψ̂j by a factor k but it does not modify the
variation in time of the modulus |x ? ψj(t)|. It can thus be in-
terpreted as a frequency transposition, as in a musical score,
which transposes frequencies without affecting “rhythms”
and “melodies”.
Phase-harmonic moments. A phase-harmonic representa-
tion is defined by

U`x = ck [x ? ψj ]
k with ` = (j, k), 1 ≤ j ≤ J, (11)

where the multiplicative constants ck are adjusted to satisfy
the contractive property (4). For k = 0, the mean is the same
as scattering means (8):

µ` = 〈|x ? ψj |〉 = ‖x ? ψj‖1 (12)

and for k 6= 0 the mean is nearly zero because 〈ψj〉 = 0.
One can also verify that a wavelet phase harmonic covariance
matrix is sparse [24]. Nonzero covariance coefficients cap-
ture scale interactions for ` = (k, j) and `′ = (k′, j′) when:
i) k = 1 and j′ = k′ + j to correlate variability at different
scales, ii) k = k′ = 0, to correlate low-frequency envelopes,
and iii) k = 0 and k′ ∈ {1, 2, 3} to correlate envelopes with
coarse scales. When k or k′ are nonzero, these moments re-
tain the phase information, and measure the effects of tempo-
ral asymmetries at different scales.
Joint scattering and phase harmonics models They are
computed with a representation Ux which incorporates both
the scattering coefficients (7) and the wavelet phase harmon-
ics (10). The resulting covariance matrix is the union of

Fig. 5. Financial time series: mixed reconstruction. Top:
example of reconstruction. Bottom, left to right: multifrac-
tal scaling function ζ(q), cdf P (x), and leverage Lτ , for the
original S&P 500 data (black) and reconstructions (red).

the diagonal scattering covariance coefficients and the scale-
interaction wavelet phase-harmonic covariance. Realizations
x̃ of the resulting microcanonical models are computed from
empirical scattering and wavelet phase-harmonic covariances.

5.2. Numerical results

Financial time series. Figure 5 (top) shows a reconstructed
realization of S&P daily returns using the combined micro-
canonical model. The temporal intermittency and irregularity
are correctly captured. Fig. 5 (bottom left and middle) further
shows that the addition of phase-harmonic moments improves
estimates of multifractal properties: the functions ζ and P for
the original and replicates are almost indistinguishable.

Figure 5 (bottom right) shows the main benefit of the ad-
dition of phase-harmonic moments: the leverage effect is cor-
rectly captured. The leverage L(τ) is found to be 0 for τ < 0,
and negative for τ > 0. Further , despite a clear bias, the
dynamics of the recovered L(τ) for τ > 0 resembles an ex-
ponential with a similar time constant as the original. These
results clearly suggest that phase-harmonic moments succeed
in capturing temporal asymmetries in the data.

6. CONCLUSIONS

This paper introduces a stochastic model to represent inter-
mittent time series with nongaussian heavy-tailed distribu-
tions, long-range correlations, and temporal asymmetries. We
showed that it provides a good model for financial time series
such as the S&P 500 daily returns. Our results demonstrate
that second-order scattering moments are sufficient to capture
the high-order statistics of multifractal processes. We also
showed that phase-harmonic correlations can reproduce tem-
poral asymmetries such as the leverage effect. An extension
to other statistical properties and to multivariate situations is
under development.
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