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ABSTRACT

Design of infinite impulse response (IIR) digital filters to
approximate some desired magnitude-frequency response is
a classical research topic in signal processing. When a pole
radius constraint is imposed, however, the problem becomes
challenging and few solution methods are available. This
paper converts the magnitude-response approximation prob-
lem into another problem that approximates the desired mag-
nitude response and an accompanied phase response simul-
taneously. By iteratively updating the accompanied phase
response, a solution to the original magnitude-response
approximation problem can be obtained. A striking feature
of the proposed method is that the pole radius constraint can
be easily incorporated in the problem. Simulations and com-
parisons demonstrate the effectiveness of the method.

Index Terms — 1IR digital filter, approximation pro-
blem, magnitude response, pole radius, iterative algorithm

1. INTRODUCTION

Design of infinite impulse response (IIR) digital filters to
approximate some desired magnitude responses is a classical
research topic in signal processing [1] [2]. Several functions,
e.g., butter(), chebyl(), cheby2(), ellip(), iirlpnorm(), and
iirlpnorme(), are available in the MATLAB "signal proces-
sing" and "filter design" tool boxes, all approximating some
desired magnitude response optimally in some senses. While
some of these functions use analytic methods, the others
utilize optimization methods to solve the design problem.
The magnitude-response approximation of a desired IIR
digital filters is a highly nonconvex problem in terms of the
filter coefficients. If no pole radius constraint is imposed, the
problem can be converted into a magnitude square response
approximation problem which is convex in terms of the
coefficients of the magnitude square function [3]. The filter
coefficients are then retrieved from the coefficients of the
magnitude square function by some spectral factorization
techniques [4] [5]. The stability of the filter is assured by
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choosing the filter poles as those of the magnitude square
function inside the unit circle. However, the resultant maxi-
mum pole radius may be larger than the prescribed value.

Ref. [6] formulates the specifications and limitations on
the magnitude square function as well as the stability condi-
tions obtained via Rouché's theorem as semidefinite matrix
constraints. It then casts the magnitude response approxima-
tion problem as a semi-definite programming problem. The
resultant filter has a guaranteed maximum pole radius. The
iirlpnorm() and iirlpnormc() functions in the MATLAB
"filter design" toolbox directly minimize the L,-norm of the
magnitude-response approximation error formulated in terms
of the second-order-section coefficients of the filter [2].
While the function iirlpnormc() imposes a constraint on the
filter to limit its pole radius, the function iirlpnorm() doesn't
allow such a constraint.

This paper formulates the magnitude-response approxi-
mation problem in terms of the filter coefficients. The pro-
blem is converted into some frequency-response approxima-
tion subproblems with the same desired magnitude response
and some accompanied phase responses that are iteratively
updated by the phase responses of the filters obtained in the
previous iterations. It is shown in [7] that, the solution to the
subproblems with such accompanied phase responses con-
verges to the solution of the original magnitude-response
approximation problem. For the design of IR digital filters
with simultaneous magnitude- and phase-response specifica-
tions, many algorithms [8] - [15] permit a constraint on the
filter's pole radius and are applicable to those frequency-
response approximation subproblems. The Gauss-Newton
(GN) strategy [13] [15] incorporated with an elliptic-error
constraint [7] is used in this paper. Simulation examples are
provided to demonstrate the effectiveness of the proposed
method and to compare with existing algorithms.

2. PROBLEM FORMULATION

Denote by H(z,g,a,b)=gB(z,b)/A(z,a) the transfer function
of an IIR filter, where g is the zero-frequency gain,

Bb)=1+bz" +bz"+ - +bz", (1a)
Aza)=1+a,z" +a,27 + - + a2z, (1b)
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b = [b,, by, -, b\]' and a = [a,, a,, -, a,]" are the real
valued coefficient vectors of the filter's numerator and deno-
minator, where the superscript [-]" denotes the transpose of a
vector. Denote by D(@) the desired magnitude-frequency
response defined on a dense grid €, of the frequency
interval [0, rt], and by

E(ag,a.b) = |H(",g.a,b)| - D(o), 2

the approximation error between the actual and desired
magnitude responses. We consider the minimax approxima-
tion in this paper, which is described as

min _max W (w)|E(w.g,a.b)|, (3a)

g.acS(p)b weQ

where W(@)>0 is a weight function,

S(p)z{aeRN

all zeros of A(z,a) lieinside a circle (3b)
of radius p centered at the origin |’

and Q =QPUQS is a subset of Q, with Q,c €, and Q,cQ,

denoting the passband and stopband frequency sets, respec-
tively. By introducing d=max,_, W(@)|E(@g,a,b)|, the
minimax approximation problem can be further rewritten as

min &, (4a)

g.aeS(p).b,6

st: W(@)|H(e”.g.a.,b)-D(@)<5, weQ.  (4b)

3. SOLUTION ALGORITHMS

Similarly as in [7], to solve the nonconvex mnimax magni-
tude-response approximation problem (4), we introduce a
frequency-response approximation problem as follows:

min J, (52)
g.aeS(p).b,0

st W(a))|H(eJ'“,g,a,b)—D(w)eW)|35, weQ, (5b)

with ¢(@) being some given phase function. As a corollary
of Theorem 1 of [7], we have the theorem below.

Theorem 1. We assume H(z,g ,a ,b") is a solution filter
of the magnitude-response approximation problem (4), and
denote by ¢'(w) the phase of H(e'”,g,a’,b"). Then the
solution filter H(z, é,ﬁ,l;) of the frequency-response appro-
ximation problem (5) with ¢(@)=¢ () is also a solution fil-
ter of the magnitude-response approximation problem (4).

Theorem 1 tells us that we can obtain the solution filter
of the magnitude-response approximation problem (4) by
solving the frequency-response approximation problem (5) if

the phase function ¢'(&) is known. Unfortunately, since g,
a and b are unknown, the phase function ¢'(a) is also
unknown. However, with an initially guessed phase func-
tion @,(®), we can solve the frequency-response approxima-
tion problem (5) iteratively. That is, we let the phase func-
tion ¢, , (@) in the (k+1)-th iteration to be the phase response
of H(z,g,,a,, b,) obtained in the k-th iteration. In this manner,
by iteratively solving problem (5), the solution of the mag-
nitude-response approximation problem (4) can be obtained.

As in [7], in order to speed up the convergence of the
iterative procedure, the frequency-response error constraint
(4b) at a passband frequency is replaced by an elliptic-error
constraint described as follows:

W(w)‘Re[E,(a),g,a,b)]+%lm[1?¢(a),g,a,b)]‘Sé‘,a)eQp, (6)

where E¢(w,g,a,b)=e"j”(‘”)H(eJ“’,g,a,b)—D(a)) is a

transformed frequency-response error function and A>1 is
an algorithm parameter.

Then, the algorithm for solving the nonconvex minimax
magnitude-response approximation problem (4) is described
in Algorithm 1 below.

Algorithm 1

for the nonconvex minimax approximation problem (4)

Step 1. Given an initial phase function ¢ (@), and a,=0. Let
k=0.

Step 2. Solve for a,,, and b,,, the following nonconvex
minimax complex approximation subproblem

(gk+1 ’ak+] ’bk+l ’§k+l ): argmin 5 H (73)

g.aeS(p).b,0

st: W(o)|H(e".g.a.b)|<6, weQ,, (7b)

W(@)|RelE, (0,g.a.b)+Im[E, (0,g,a,)]<5,0eQ, .(T¢)

Step 3. Compute the phase response ¢, (@) of the filter
H(z,8kr1, @41, bir)-

Step 4. If some stop condition is satisfied, terminate. Other-
wise, let k = k+1 and go back to Step 2.

In step 2 of the Algorithm 1, the minimax subproblem
(7) is still nonconvex. To solve the subproblem, we use the
Gauss-Newton (GN) strategy [13] [15] to transform it into a
convex minimax subproblem. That is, the frequency res-
ponse H(e",x), where x=[g,a",b"]", is replaced by its first-
order Taylor expansion near x(/) as

H(e” x)=H(" x(O)+p(o.x(D) [x=x(D], ()
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where y(m.x)=0H(e”,x)/ox is the gradient of the frequency
response H(e'”,x) with respect to the coefficient vector x.

To assure the designed filter to be stable and have a
prescribed maximum pole radius, a sufficient condition, i.e.,
the generalized positive realness condition [10], is used in
this paper to constrain the filter's denominator coefficients.
The condition is based on Lemma 2 below.

Lemma 2. All zeros of A(z,a) will be inside a circle of
radius p centered at the origin if A(z,a(?)) has all zeros
inside the same circle and Re[A(pe'”,a)/A(pe'”, a(l))]>0
for all we [0,rt]. (see [8] for a proof)

From Lemma 2 we may obtain the following stability
constraint:

—Refe " A(pe'”,a)]<0, weQ,, 9)

where 8,(w) is the phase of A(pej“’,a(é)). For any given @,
constraint (9) is linear with respect to the coefficient vector
a of the filter denominator A(z,a). It can be easily incor-
porated in the design problem (7) to replace the stability
constraint a € S(p).

Algorithm 2

for the nonconvex minimax subproblem (7)

Step 1. Given an initial solution x(0)=[g(0),a(0)",5(0)"1",
with a(0)=a,eS(p). Let £ = 0.

Step 2. Compute H(ej"’,x(f)), w(@x(!)), and the phase 6,(w)
of A(pe'®, a(1)).

Step 3. Solve for x(/+1)=[g(¢+1),a(+1)",b(/+1)"]" the
following convex minimax subproblem

(x(£+1),0(¢+1))=argmin &, (10a)
x,0

H(0,x(0).,1)]-D(w)

+, (@,x(0),A)" [x—x(0)]

W (@)|H (" x(0)+p(@,x(0) [x-x(1)]<5,0eQ,,(100)
—Re[e "V A(pe'?,a)]<—€, weQ,,
lg—g()I<v, [b-b(0)|_<v, |a-a(0)|_<v,

s.t.. W(w) <6, weQ,, (10b)

(10d)
(10e)

where £>0 is a sufficiently small number, say 107, and
v>0 is a step size parameter.
Step 4. If ||x(t+1)—x(D)||<107Yx(0)], let g, ,=g(l+1),
a,,=a((+1), b, ,=b(/+1), and terminate the algo-
rithm. Otherwise, let / = /+1 and go back to Step 2.

By incorporating with the first-order Taylor expansion
(8) and the stability constraint (9), the solution algorithm for
the nonconvex minimax subproblem (7) is described in
Algorithm 2. In Step 3 of the algorithm,

H, (@,x(0),A)=Re[H, (0,x(")) |+ Im[H, (@,%(!))]
with H, (@, x(0)) = *“ H(w, x(1)),

and 7, (@, x(£), 2) = Re[i7, (@, x(0))] + 4 Im[i7, (@, x(0))]
with 7, (@, x(0)) = ¢y (@, x(1))

If the maximum zero radius is also needed to be smaller
than some prescribed value », we could add in the convex
minimax subproblem (10) another constraint described by

—Re[e "' B(re',b)|< -, weQ,,

(11)
where @, (@) is the phase of B(re'”,b(()).
4. SIMULATION AND COMPARISONS

Two examples of lowpass IIR filter design are provided to
show the efficacy of the proposed method and to compare
with the ellip() and iirlpnromc() functions and the recent
method in [6]. In the design, the dense grid Q= {w=km/400,
k=0, 1, ---, 400}, the algorithm parameter A = 100 and the
step-size parameter v = co. Letting v = oo corresponds to the
case that the constraint (10e) is not imposed in the problem
(10), which is often fine when the filter order is not large.

Example 1. Design of a 4th-order low-pass filter with a
passband [0,0.2r] and a stopband [0.45m,w]. The weight
function W(w) is taken as 1.0 in the passband and 188.5 in
the stopband. As the first design, the maximum pole radius
parameter is set to be a value close to 1.0, p=0.999. The
proposed method converges fast. Algorithm 1 obtains a
0=0.1081 after 21 iterations. Fig. 1 shows the curve of J;
versus the iteration number k. Fig. 2 draws the magnitude
response of the resultant filter. It has a maximum passband
ripple Rp=1.88463 dB and a minimum stopband attenuation
Rs=65.724 dB. With the Rp and Rs values, the MATLAB
function ellip(4,Rp,Rs,0.2) obtains almost the same filter,
whose magnitude response is also shown in Fig. 2.

— 1st design with p=0.999 ||

0.4t
0.3

0.2|

L 1 i |
0% 5 10 15 20 25 30 35 40 45 50

Iteration k

Fig. 1 Convergence of 0, by the proposed Algorithm 1 in the first
two designs of Example 1

5493



The filters obtained by the ellip() function and the
proposed method have a maximum pole radius of 0.9422
and 0.9423, respectively. If we require a smaller maximum
pole radius, say, p=0.92, the ellip() function has no way to
design the filter. The proposed method obtains a filter with a
maximum passband ripple Rp=2.48335 dB and a minimum
stopband attenuation Rs=63.6146 dB after 12 iterations. The
convergence curve for this design and the magnitude res-
ponse of the resultant filter are shown in Figs. 1 and 2, res-
pectively. The maximum pole radius of this filter is 0.9178.

—proposed 1st design with p=0.989
=== design by the ellip() function I
== proposed 2nd design with p=0.92 ‘

Magnitude response in dB
(=]
=]

0 01 02 03 04 05 06 07 08 08 1
@ in unit of n

Fig. 2 Magnitude responses of the two filters by the proposed
method and the filter by the ellip() function

|—design by proposed method
|—-- design by method of [6]

40}

Magnitude response in dB

% 01 02 03 04 05 06 07 08 09 1
o in unit of =

Fig. 3 Magnitude responses of the two filters with pole/zero
radiuses smaller than 0.92

To compare with ref. [6], where both the maximum pole
and zero radiuses are required to be smaller than 0.92,
another filter is designed with our proposed method. The
design is conducted under the same passband to stopband
ripple ratio and the same maximum pole/zero radius para-
meter as in [6]. The resultant filter has a maximum passband
ripple Rp=2.9866 dB, a minimum stopband attenuation
Rs=62.2503 dB, which are better than the corresponding
values in [6], i.e., Rp=3 dB and Rs=60 dB. The maximum
pole/zero radiuses of the designed filter and the filter in [6]
are 0.9177/0.92 and 0.9061/0.9192, respectively. Fig. 3
depicts the magnitude responses of the two filters.

Example 2. Design of a 12th-order low-pass filter with
a pass-band [0,0.57] and a stopband [0.55m,w]. The weight
function W(w) is taken as 1.0 both in the passband and the
stopband. Again, we first design a filter using the proposed
method with a maximum pole radius parameter value close
to 1.0, p=0.999. The resultant filter has a maximum pass-
band ripple Rp=0.00115773 dB, a minimum stopband atte-
nuation Rs=83.5253 dB, and a maximum pole radius 0.9781.
With the resultant Rp and Rs values, the function ellip(12,
Rp,Rs,0.5) obtains an elliptic filter almost the same as that
by our proposed method. We now reduce the maximum pole
radius by setting p=0.94 and redesign the filter using the
proposed method, resulting in a constrained filter with a
maximum passband ripple Rp=0.0312542 dB, a minimum
stopband attenuation Rs=54.9143 dB, and a maximum pole
radius 0.9377. We do not compare with [6] in this example
since it is not considered in [6]. Instead, we design another
constrained filter by iirlpnorme(12,12,[0 0.5 0.55 1],[0 0.5
0.55 1],[1 1 0 OL,[1 1 1 1],0.94). The resultant maximum
passband ripple is 0.045323 dB, minimum stopband atte-
nuation is 51.464 dB, and maximum pole radius is 0.94.

0
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5 design by ellip() function 1
2 -120 e , ¥ i
= --=-design by lirlpnorme() with p=0.94 ' "\
140F [ proposed 2nd design with p=0.94 '-\_ 4
[
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Fig. 4 Magnitude responses of the two filters by the proposed
method and the filters by the ellip() and iirlpnorme() functions

Fig. 4 shows the magnitude responses of the four filters,
two with a large pole radius about 0.978, and two with a
smaller pole radius about 0.94. It is seen that, when p<1 is
close to 1.0, the proposed method obtains the same stable
filter as the ellip() function. When p=0.94, the proposed
method obtains a better filter than the iirlpnorme() function.

5. CONCLUSION

The proposed method has incorporated a maximum pole
radius constraint in the magnitude-response approximation
of IIR digital filters. When the maximum pole radius is close
to 1.0, the method has obtained the same solution as that by
the ellip() function. With a maximum pole radius obviously
smaller than 1.0, the proposed method has obtained better
filters than the iirlpnorme() function and the method of [6],
but the ellip() function may not be able to design such filter.
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