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ABSTRACT

The paper introduces a novel family of deterministic signals, the or-
thogonal periodic sequences (OPSs), for the identification of func-
tional link polynomial (FLiP) filters. The novel sequences share
many of the characteristics of the perfect periodic sequences (PPSs).
As the PPSs, they allow the perfect identification of a FLiP filter on
a finite time interval with the cross-correlation method. In contrast
to the PPSs, OPSs can identify also non-orthogonal FLiP filters, as
the Volterra filters. With OPSs, the input sequence can have any per-
sistently exciting distribution and can also be a quantized sequence.
OPSs can often identify FLiP filters with a sequence period and a
computational complexity much smaller than that of PPSs. Several
results are reported to show the effectiveness of the proposed se-
quences identifying a real nonlinear audio system.

Index Terms— Nonlinear system identification, orthogonal pe-
riodic sequences, functional link polynomial filters.

1. INTRODUCTION

Functional Link Polynomial (FLiP) filters [1] are a subclass of
linear-in-the-parameters (LIP) nonlinear filters. They consists of a
linear combination of basis functions, which are product of nonlin-
ear expansions of delayed input samples following the constructive
rule of Volterra filters. The subclass of FLiP filters is very broad and
it includes many families of polynomial filters of wide use in theory
and practice [2–7], as the well known Volterra filters [8–10], the
even mirror Fourier nonlinear (EMFN) [11], the Legendre nonlinear
(LN) [12], Chebyshev nonlinear (CN) [13], and Wiener nonlin-
ear (WN) [8, 14] filters. All families of FLiP nonlinear filters are
universal approximators, since their basis functions form algebras
that satisfy all requirements of the Stone-Weierstass theorem [15].
Some of the FLiP filters have orthogonal basis functions for some
input distribution, e.g., EMFN, LN, CN, WN filters. For this reason
the coefficients of orthogonal FLiP filter can be computed using
the cross-correlation method, i.e., calculating the cross-correlation
between the basis functions and the system output. Unfortunately,
the cross-correlation method with stochastic inputs presents the
drawback of requiring million of samples to accurately estimate the
filter coefficients [9, 16]. As an alternative to random signals, ap-
propriate deterministic input signals have been proposed for system
identification. Among them, perfect periodic sequences (PPSs) [17,
18] are deterministic sequences with an ideal periodic impulsive
autocorrelation function, which have been first used as inputs for
linear system identification [19, 20]. In case of nonlinear filters, a
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periodic sequence is defined as a PPS if the cross-correlation be-
tween any two different basis functions, estimated over a period,
is zero. This definition extends the linear case in which the input
samples themselves can be considered as basis functions. PPSs have
been proposed for the identification of Orthogonal FLiP filters for
EMFN [21, 22], LN [12, 23], CN [24] and WN filters [25]. The
PPSs have been obtained by imposing the orthogonality of the ba-
sis functions and solving a system of nonlinear equations with an
iterative approach.

In this paper, a novel family of sequences called orthogonal pe-
riodic sequences (OPSs) is introduced. Their main purpose, as for
the PPSs with whom they share many of the characteristics, is the
identification of FLiP filters. As the PPSs, they allow the perfect
estimation of a FLiP filter on a finite time interval with the cross-
correlation method. In contrast to the PPSs, OPSs can identify also
non-orthogonal FLiP filters, as the Volterra filters. With OPSs, the
input sequence does not need to be perfect periodic, it can have
any persistently exciting distribution and can also be a quantized se-
quence. Once defined the input sequence, a set of OPSs can be devel-
oped with each OPS designed to estimate by cross-correlation one of
the so-called “diagonals” of the FLiP filter. OPSs can often identify
FLiP filters with a sequence period and a computational complex-
ity much smaller than that of PPSs. The proposed procedure differ
from the classical methods of Lee-Schetzen [14, 26], which allow to
identify WN filters using white noise, and of Korenberg [27], which
determine the coefficients of a data dependent orthogonal represen-
tation. The last two methods are based on the Gram-Schmidt or-
thogonalization of the Volterra series and require filter conversions,
which are not applied in the proposed approach.

The rest of the paper is organized as follows. In Section 2 FLiP
filters are briefly reviewed. Section 3 introduces the novel family of
OPSs and discusses their properties. Section 4 provides some exper-
imental results about the identification of a real nonlinear device and
compares OPSs with PPSs and least-square (LS) measurements.

The following notation is used throughout the paper: R1 is the
interval [−1,+1], <a(n)>L is the sum of a(n) over a period of L
consecutive samples, E[·] indicates expectation.

2. FLIP FILTERS

FLiP filters are a class of LIP nonlinear filters capable to arbitrarily
well approximate any discrete-time, time invariant, finite memory,
causal, continuous nonlinear system

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (1)

where f is a continuousN -dimensional function fromRN1 toR, and
x(n) ∈ R1.

The basis functions of FLiP filters can be developed by consider-
ing an ordered set of univariate functions satisfying all requirements
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of Stone-Weierstass theorem [28] onR1,

{g0[ξ], g1[ξ], g2[ξ], ...} (2)

where g0[ξ] is a function of order 0, usually the constant 1, g2i+1[ξ]
for any i ∈ N is an odd function of order 2i + 1, g2i[ξ] for any
i ∈ N is an even function of order 2i. Setting ξ = x(n), the set of
basis functions in (2) can arbitrarily well approximate the nonlinear
system in (1) for N = 1. When N > 1, the functions in (2) are first
written for ξ = x(n), x(n−1), . . . , x(n−N+1) and then the terms
of different variable are multiplied in all possible manners, according
to the constructive rule of Volterra filters, taking care of avoiding
repetitions. The basis functions so developed form an algebra that
satisfies all requirements of the Stone-Weierstass theorem and their
linear combination can arbitrarily well approximate the system in (1)
[1].

The order of a FLiP basis function is defined as the sum of the
orders of the constituent factors gi[ξ]. The diagonal number of a
basis function is defined as the maximum time difference between
the involved input samples. Accordingly, a FLiP filter of order K,
memory N , diagonal number D is given by the linear combination
of all FLiP basis functions, with order, memory and diagonal number
up to K, N , D, respectively. A FLiP filter can be implemented in
the form of a filter bank as follows:

y(n) =

R−1∑
p=0

Np−1∑
m=0

hp(m)fp(n−m) (3)

where fp(n) are the zero lag basis functions, i.e., f0(n) = 1,
f1(n) = g1[x(n)], f2(n) = g2[x(n)], f3(n) = g1[x(n)]g1[x(n −
1)], . . ., f2+D(n) = g1[x(n)]g1[x(n − D)],f3+D(n) = g3[x(n)],
and so on, Np is the memory length for the basis function fp(n),
which is N minus the diagonal number of fp(n); R is the total
number of zero lag basis functions, i.e.,

R =

(
D +K

D + 1

)
+ 1. (4)

The FLiP filter in (3) has ND coefficients with [1]

ND =

(
D +K + 1

D + 1

)
+

(
D +K

D + 1

)
(N − 1−D). (5)

Using the naming conventions of Volterra filters each sequence
hp(m) with 0 ≤ p ≤ R− 1 is called a diagonal of the FLiP filter.

Any choice of the univariate functions gi(ξ) takes to a different
family of nonlinear filters. In Section 4, Volterra, WN and LN filters
are considered. For Volterra filters, gi(ξ) = ξi. For LN filters, gi(ξ)
are Legendre polynomials,

{1, ξ, (3ξ2 − 1)/2, ξ(5ξ2 − 3)/2, . . . }. (6)
For WN filters, gi(ξ) are Hermite polynomials of variance σ2

x ac-
cording to the definition in [29],

{1, ξ, ξ2 − σ2
x, ξ

3 − 3σ2
xξ, . . . }. (7)

Orthogonal FLiP filters have basis functions that are orthogonal for
a specific distribution of the input signal samples. For example, the
basis functions of LN filters are orthogonal for a white uniform in-
put in R1, those of WN filters are orthogonal for a zero mean white
Gaussian input with variance σ2

x. When the input distribution guar-
antees the orthogonality of the basis functions, the coefficients of the
filter can be estimated with the cross-correlation method, computing
the cross-correlation between the basis functions and the system out-
put. Using stochastic inputs, millions of samples are often needed to
accurately estimate the coefficients of the FLiP filter. Nevertheless,
it has been shown that any orthogonal FLiP filter admits PPSs, i.e.,
deterministic periodic sequences that guarantee the orthogonality of

the basis functions over a period. Using a PPS input, an orthogonal
FLiP filter can still be identified with the cross-correlation method,
with the coefficient hi(j) given by

hi(j) =
< y(n)fi(n− j) >L

< f2
i (n) >L

. (8)

3. ORTHOGONAL PERIODIC SEQUENCES

In this section OPSs are developed. Each OPS allows the iden-
tification of one of the diagonals of a FLiP filter using the cross-
correlation method.

Let us consider a periodic input sequence x(n) of period L. The
input sequence is assumed to persistently excite the FLiP filter to
guarantee the invertibility of the input data matrices introduced in the
following. This condition is satisfied when the input samples of the
fundamental period have a Gaussian distribution, a white uniform
distribution inR1, or other random distribution. The sequence could
also be a quantized sequence.

We want to develop an OPS zi(n) of period L such that the i-th
diagonal of the FLiP filter in (3), hi(j) with 0 ≤ j ≤ Ni − 1, can
be estimated as follows

hi(j) =< y(n)zi(n− j) >L . (9)

Let us consider first i = 0 and f0(n) = 1. Inserting (3) in (9) for
j = 0, to be (9) true it must be

< f0(n)z0(n) >L=< z0(n) >L= 1, and (10)

< fp(n−m)z0(n) >L= 0, (11)

for all 0 ≤ m ≤ Np − 1, and 0 < p ≤ R− 1.
For i > 0, inserting (3) in (9), it can be proved the OPS zi(n)

must satisfy the linear equations system
< zi(n) >L = 0, (12)

< fi(n)zi(n) >L = 1, (13)
< fi(n−mi)zi(n) >L = 0, (14)
< fp(n−mp)zi(n) >L = 0, (15)

for all−(Ni−1) < mi ≤ Ni−1 andmi 6= 0,−(Ni−1) ≤ mp ≤
Np− 1 and 0 < p ≤ R− 1 with p 6= i. The system in (12)-(15) has
Qi equations and L variables (the samples of zi(n)), with

Qi = ND + (R− 1)(Ni − 1). (16)

For L ≥ Qi, the system is critically determined or under-determined
and, if the input is persistently exciting, it always admits a solution.

Let us write the system in matrix form,
Sz = d (17)

with z a vector collecting the samples of zi(n), d a vector of all
zeros apart from the element 1 corresponding to (13), and S a fat
or square matrix, whose elements are basis function samples. The
minimum norm solution of the system is

z = S(SST )−1d. (18)
The elements of the matrix SST are formed by cross-correlations be-
tween basis functions with different time delays. By properly sorting
the rows of the matrix S, SST is block Toeplitz and admits efficient
algorithms for its inversions. For example, we have found very use-
ful the algorithm presented in [30]. Working with nonlinear basis
functions, the matrix SST could have a bad conditioning, but for
sufficiently large L we have always been able to find a solution with
sufficient accuracy working with a double precision arithmetic.

When L ≥ Q with Q = ND + (R − 1)(N − 1), i.e., Q =
maxiQi, it is possible to develop a set of OPSs zi(n) for 0 ≤ i ≤
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R − 1, which allows to estimate with the same input sequence all
diagonals of the FLiP filter. The same input sequence could be used
for estimating different types of FLiPs filters finding different sets of
OPSs.

It should be noted thatQ is in general much lower than the num-
ber of nonlinear equations Q ' R(ND + 1) that have to be solved
for deriving a PPS for the same FLiP filter. Computing an entire
set of OPSs requires less computations than a single iteration of the
algorithm used to develop PPSs.

3.1. Nonlinear system identification with OPSs

In output noise absence, a set of OPSs sequences for a FLiP filter of
order K, memory N , diagonal number D, allows the exact identifi-
cation of any nonlinear system that can be modelled with the chosen
FLiP filter. In presence of noise or in case of an under-estimation of
the nonlinear system, the identification will be affected by an error.

In what follows, the effect of an output noise ν(n) on the coef-
ficients identification with OPSs is studied. The mean square devia-
tion (MSD) of the coefficients of fi(n− j) is defined as

MSDi,j = E[(hi(j)− h̃i(j))2], (19)

with hi(j) the estimated coefficient and h̃i(j) its true value. For
OPSs, from (9) we have

MSDi,j = E[(< ν(n)zi(n− j) >L)2]. (20)

It is evident that MSDi,j is proportional to the noise power σ2
ν .

Moreover it is also inversely proportional to < f2
i (n) >L, be-

cause according to (13) < z2i (n) >L is inversely proportional to
< f2

i (n) >L . To compare the different OPSs on equal terms, we
introduce the noise gain Gν , which is defined as the average value
over all coefficients of

Gν,i,j =
MSDi,j
E[ν2(n)]

< f2
i (n− j) >L . (21)

For PPSs, it can be proved thatGν,i,j andGν are always 1, indepen-
dently of the considered filter or the period L of the sequence. On
the contrary, inserting (20) in (21) and computing the expectations,
for OPSs we obtain

Gν,i,j =< z2i (n) >L · < f2
i (n) >L, (22)

which is independent of the delay j of the basis function. It is shown
in the next section that for OPSs Gν changes with the chosen filter,
the distribution of the input samples, and the period L. For a specific
filter and input sample distribution, Gν can greatly change with L,
because the choice of L influences the power of the designed OPS
zi(n). When L = Q, i.e., the minimum period of the OPS, we have
found Gν can assume very large values that makes the identification
with OPSs useless. On the contrary, when L� Q, Gν assumes rea-
sonable values. In orthogonal FLiP filters, with the input sample dis-
tribution ideally guaranteeing the basis functions orthogonality (e.g.,
Guassian for Wiener filters, uniform for LN filters), for L → ∞
Gν → 1, the ideal value we have with PPSs, because the longer is L
the closer the input sequence is to a PPS.

From (9), the computational cost of a filter identification with
OPS is of LR multiplications and additions. This computational
cost is much lower than that of a LS identification on the same data,
which is order of LN2

D operations. Also for PPS sequences we have
a computational cost of LR multiplications and additions if in (8)
we neglect the cost of computing the basis functions and of the nor-
malization. Nevertheless, we will show in the next section that OPS
sequences can provide identification performance similar to the PPSs
with much shorter periods.
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Fig. 2. Noise Gain of OPSs for LN, WN and Volterra filters.

4. EXPERIMENTAL RESULTS

To assess the performance achievable with the OPSs, we have con-
sidered the identification of a real device, a Behringer Mic 100 Va-
cuum Tube Preamplifier. The device has a potentiometer that allows
to introduce different nonlinear distortion levels on the output signal.
Thirteen different settings have been considered and Fig. 1 shows
the second, third and total harmonic distortion on a 200 Hz signal
having signal power 1/12. The signal to noise ratio was around 50
dB. Working at 8 kHz sampling frequency, the device has a memory
lower than 20 samples, and different signals with power 1/12 have
been applied for its identification. Specifically, two PPSs for LN and
WN filters, respectively, with order 3, memory 20, diagonal num-
ber 19, and period L = 357 956, and eight periodic sequences with
uniform and with Gaussian distributions, quantized with 10 bits, and
with periods

[6140, 213, 214, 215, 216, 217, 218],
have been considered. OPSs for LN, WN and Volterra filters with or-
der 3, memory 20, diagonal number 19 have been derived for the pe-
riodic sequences and have been used to identify the preamplifier. The
minimum period for deriving OPSs for these filters is Q = 6140.

Fig. 2 provides the MSD noise gain Gν in dB of the OPSs as
a function of the base-2 logarithm of the period. The OPSs for LN
filters have been determined on the sequences with uniform distri-
bution, those for WN filters on the sequences with Gaussian distri-
bution, while the OPSs for Volterra filters have been determined on
both sets of periodic sequences. As we can notice, theGν has totally
unacceptable values (of around 60 dB) when the period L = 6140.
On the contrary, Gν reduces when the period increases. For the or-
thogonal filters, i.e., LN and WN filters, Gν approaches the optimal
value of 0 dB we have with PPSs. On the contrary, for Volterra fil-
ters, which are not orthogonal and do not admit PPSs, Gν does not
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Fig. 3. NMSEs for (a) LN filter and (b) Volterra filter on uniform
distribution input, and for (a) WN filter and (b) Volterra filter on
Gaussian distribution input

converge to zero, but for large values of L assumes reasonable val-
ues, in the order of few dBs. By averaging the output signal over
some periods, also the OPSs for Volterra filters can provide MSD
values similar to those of the PPSs.

Fig. 3 compares the identification performance of the differ-
ent filters in terms of normalized mean square error (NMSE).
The MIC100 preamplifier has been identified at the different set-
tings using one period of the PPS or OPS sequences and using
218 = 262 144 samples with the least-squares algorithm. Then, the
identified models have been tested on a different input sequence of
100 000 samples, matching the sample distribution of the periodic
sequence used for the identification. The NMSE has been computed
on the test sequence. The OPSs of period 6140 provided totally
unacceptable results, which are not included in Fig. 3. For LN and
WN filters, it is possible to notice that OPSs for period L ≥ 216

provide results similar to the PPSs and to the LS method. In fact, the
curves tend to overlap and are almost indistinguishable. For Volterra
filters, the OPSs for L ≥ 216 provide results similar to those of
the LS method. At the highest settings, the WN and Volterra filters
identified and tested on Gaussian noise provide larger MSEs than
the LN and Volterra filters evaluated on uniform noise. This is con-
sistent with the fact that for equal power a Gaussian noise excites
larger amplitudes than a uniform noise. The experiment was also
repeated modelling the filters on the same number of input samples
for the different methods and the NMSE curves obtained are almost
identical to those of Fig. 3. The results of Fig. 3 shows that the
OPSs can identify nonlinear filters with performance similar to PPS
or LS identification but with a reduced period and computational
complexity. The computational complexity reduction in comparison
with PPSs is directly proportional to the ratio between the OPS and
PPS periods. For L = 216, the OPSs obtain a computation com-
plexity reduction of a factor 0.18 in comparison with the PPSs of
this experiment. The computational complexity of the LS method is
orders of magnitude larger than that of PPS and OPS identification.

5. CONCLUSION

A novel family of deterministic signals, i.e., the orthogonal periodic
sequences, has been presented. These sequences are useful for the
identification of FLiP filters and share many of the characteristics of
PPSs. As the PPSs they allow the perfect identification of a FLiP
filter on a finite time interval with the cross-correlation method. Fur-
thermore, OPSs present advantages in comparison to the PPSs. First
of all, OPSs can identify also non-orthogonal FLiP filters, as the
Volterra filters. The OPSs input can have any persistently exciting
distribution and can also be a quantized sequence. Finally, OPSs can
identify FLiP filters with a sequence period much smaller than that
of PPSs providing a relevant advantage in terms of computational
complexity. However, we have also shown that the OPS period L
should be chosen sufficiently larger than the minimum possible pe-
riod Q, because for L ' Q the MSD noise gain assumes very large
values that undermine the identification. These aspects have been
underlined performing several experiments on a real nonlinear de-
vice. The obtained results show the effectiveness of the proposed
approach in terms of final system identification and computational
complexity reduction in comparison with PPS and LS approaches.

Future works will be oriented to the application of these se-
quences not only for the identification of nonlinear audio devices
but also to the identification of room impulse responses, robust to-
wards nonlinearities affecting the power amplifier or the loudspeaker
of the measurement system.

Examples of OPSs can be downloaded from [31].
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