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ABSTRACT

This paper addresses the problem of tracking a cluster of space de-
bris sufficiently close to each other to be considered as a single ex-
tended object. State-of-the-art random-matrix methods estimate the
kinematics of the object centroid by assuming that its shape is elliptic
and that the observations are randomly distributed within this ellip-
soid. However, space debris, whose motion is driven by the gravita-
tional force, spread out into a ”banana”-like-shaped cluster. In this
paper, we propose a novel Lie-group based parameterization to in-
trinsically capture the ”banana”-like shape. More precisely, we first
formulate the centroid tracking problem as filtering on Lie groups.
Then, we derive an iterated extended Kalman filter on Lie groups to
perform the estimation.

Index Terms— Space debris, Bayesian estimation, cluster track-
ing, manifold, filtering on Lie groups.

1. INTRODUCTION

The term space debris refers to natural or man-made objects which
are no longer functional and are orbiting around the earth or the sun.
They can be for instance pieces of meteoroids, old satellites, rocket
stages or fragments from disintegrations and collisions. Space de-
bris in low earth orbit can cause significant damages when colliding
with operational spacecrafts [1][2]. Consequently, spatial surveil-
lance has been paid a lot of attention over the past decade [3]. It
consists in detecting the pieces of debris and determining their tra-
jectories and kinematics from sensor measurements. Bayesian ap-
proaches [4] are classically used for this tracking. In addition to the
measurements, they rely on a time-evolution model of the parame-
ters of interest, gathered in a state vector. They proceed by first se-
quentially computing the posterior probability density function (pdf)
of this state vector conditional upon all the collected measurements.
Then, pointwise state estimates are derived from this pdf.

In this paper, the surveillance is based on radar measurements.
Furthermore, we focus on the immediate aftermath of a fragmenta-
tion when the different pieces of debris are very close to each other
and form a compact cluster. In this case, they can be considered as
a single extended object and dedicated Bayesian tracking methods
can be applied [5]. A target is assumed extended if it gives rise to an
unknown and varying number of measurements spatially distributed
within its volume. Its shape may also be unknown and evolve over
time. Different algorithms have been proposed to estimate the posi-
tion of the object centroid and possibly its shape. Well-known meth-
ods are the random-matrix and the star-convex shape approaches.
The first category, initially proposed in [6], considers that the object
is ellipsoidal and parameterized by a semi-positive definite (SPD)
extent matrix. The measurements are then assumed to be normally
distributed around the centroid and with a covariance directly related

to that extent matrix. Based on this model, a closed-form recursion
of an approximation of the posterior pdf of both the centroid kine-
matic parameters and the SPD matrix is derived. However, the ellip-
soidal assumption is quite restrictive. As an alternative, the second
category of methods relies on a generic star-convex parametric rep-
resentation of the object contour such as the random hypersurface
model [7] or, more recently, the Gaussian process model [8].

The above-cited models are not well-suited for space debris in
low orbit. Indeed, as the pieces of debris are only subject to the grav-
itational force, they were shown to spread taking a specific ”banana”-
like shape [1] [10]. In this work, we propose a novel random-matrix
based approach that allows us to intrinsically take into account this
specific contour in the tracking algorithm. Our first contribution is
a new parameterization to describe the cluster of debris based on
its centroid position, a rotation matrix indicating its orientation with
respect to a reference frame and an SPD extent matrix. Both the
centroid position and the rotation matrix can be gathered to define
a state belonging to a smooth manifold, the Lie group (LG) SE(3).
Then, contrary to [6], we assume that the measurements at each time
step originate from a pdf directly defined on SE(3), which ensures
the ”banana”-like spreading. More precisely, we consider a concen-
trated Gaussian pdf centered at the unknown state and of covariance
the extent matrix. An example of samples from such a distribution is
given in figure 1 where the orientations are represented by the arrows
attached at the position vectors. The desired ”banana”-like scatter-
ing of the positions can be observed. It should be noted that it results
from the joint effect of the rotation matrix and the extent matrix. As
a first step, the latter is assumed to be known in this communication.

Fig. 1. Samples from a concentrated Gaussian pdf on the LG SE(3)
projected onto the (X,Y ) plane.

Finally, to solve the estimation problem thus defined, we derive
an iterated extended Kalman filter on LG (LG-IEKF) that recursively
computes the state estimate as the optimum of a well-chosen crite-
rion. The algorithm proposed in [11] requires adjustments to accom-
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modate the cluster tracking problem. Firstly, the centroid position is
not directly sensed: instead, a set of reflector measurements ran-
domly located within the ”banana”-shaped cluster is available. Sec-
ondly, the rotation matrix is not directly observable since the radar
only provides position measurements. To overcome this difficulty,
we introduce auxiliary variables that have to be estimated jointly
with the unknown state at the update step of the LG-IEKF. They can
be interpreted as noise-free full observations that include the missing
orientation information.

The communication is organized as follows. After this introduc-
tion, we provide the necessary background on LGs in section 2. In
section 3, we detail the considered model and algorithm. Finally, we
present some simulation results in section 4, before drawing some
conclusions and perspectives in section 5.

2. BACKGROUND ON LIE GROUPS

In this section, we introduce the theory of LGs and the formalism of
concentrated Gaussian distributions.

2.1. Lie group theory

A LG G is a group that has a structure of smooth manifold [13],
which means that the operations of derivation and integration are
smooth. In our work, we deal with matrix LGs so that G ⊂ Rn×n.
Due to the smooth manifold property, we can define ∀g ∈ G the
tangent space TgG which corresponds to the vector space of the set
of points tangent toG in g. The tangent space to the identity In×n is
paid a special attention and called the Lie algebra g. The dimension
p of the manifold G is the dimension of the vector space g.

The elements of g and G are linked by the exponential mapping,
expG : g → G, and conversely the logarithm mapping, logG :
G → g. They are locally isomorphisms. For detailed expressions,
the reader can refer to [11].

Furthermore, we can define an isomorphism between g and the
Euclidean space Rp. If a is an element of Rp and a its image in
g, we denote a = [a]∧G and a = [a]∨G respectively. The relation-
ship between the LG, its algebra and the related Euclidean space are
represented in figure 2. For the sake of simplicity, in the following,
we use the condensed notations a = log∨G(X) = [logG(X)]∨ and
X = exp∧G(a) = expG

(
[a]∧G

)
, with X ∈ G and a ∈ Rp.

Fig. 2. Link between G, g and Rp

Examples of matrix Lie groups:

• SO(n) = {P ∈ GL(n) | P .PT = In, |P| = 1}, where
GL(n) refers to the group of the invertible matrices of di-

mension n : equipped with the law ., the neutral In and the
inverse operator ()−1.

• SE(n) = {
[

A x
01×n 1

]
| A ∈ SO(n), x ∈ Rn}:

equipped with the law ., the neutral
[

In 0n×1

01×n 1

]
and the

inverse operator ()−1.

2.2. Concentrated Gaussian distribution

In a Bayesian framework, the estimators are built from the posterior
distribution of the unknown parameters. When the latter evolve on
LGs, it is thus crucial to define pdfs that intrinsically account for this
constraint. In [12] and [14], the formalism of concentrated Gaussian
probability pdfs was introduced. It makes it possible to represent
uncertainty directly on LGs. First of all, let N (x; m,Σ) denote the
multivariate Gaussian pdf with mean m and covariance matrix Σ
computed at vector x. If ε ∼ N (ε; 0p×1,P), thenX = µ exp∧G(ε)
is distributed according to a left concentrated Gaussian pdf on a LG
G, with mean µ ∈ G and covariance P ∈ Rp×p. We denote X ∼
NL
G (X;µ,P). In the neighborhood of µ, the expression of this pdf

can be approximated by:

p(X) =
1√

(2π)p |P|
exp−

1
2
|| log∨G(µ−1X)||2P , (1)

where |P| is the determinant of the matrix P and ‖.‖2P the Maha-
lanobis distance.

3. PROPOSED APPROACH

As mentioned in the literature [1][10], we could observe by numer-
ical simulations that a group of objects whose motion is completely
driven by the gravitational force tends to spread taking a specific
configuration illustrated in figure 3. The latter is typical of samples
distributed according to concentrated Gaussian pdfs on some LGs.
This work proposes a novel approach to track a cluster of space de-
bris complying with this property. For that purpose, we represent the
cluster by both the centroid position and an orientation with respect
to the earth centered earth fixed (ECEF) frame used as a reference for
the tracking. The latter takes the form of a rotation matrix between
the ECEF frame and a local frame attached to the centroid. Both the
centroid position and cluster rotation matrix form a state belonging
to the LG SE(3) and propagating with the desired ”banana”-shaped
uncertainty. In this section, we formulate the estimation of the clus-
ter state from the collected measurements as a filtering problem on
LG. We first present the considered state space representation to en-
sure that both the state and the measurements lie on LGs. Then, we
derive an algorithm to solve the estimation problem. It builds upon
the LG-IEKF introduced in [11] but with a different update step. In-
deed, the specificity is that the cluster gives rise at each time step to
several measurements randomly scattered within its volume.

3.1. State model

The state of the cluster is described by the matrix

Mk =

[
Rk pk

01×3 1

]
in SE(3) with pk and Rk the position of

its centroid and its rotation matrix, respectively.
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Fig. 3. Temporal evolution of cluster of space debris by Monte-Carlo
simulation.

However, the evolution of pk under the influence of the gravita-
tional force depends on the previous velocity vk−1 which is itself
unknown. Therefore, we have to consider a state augmented by vk
which belongs to R3. By noting that R3 can be considered as a
SE(3) LG with a rotation matrix fixed at the identity, we propose
the following state in the LG SE(3)× R3:

Xk =

 Mk 06×6

04×4
I3×3 vk
01×3 1

 .
For the sake of brevity, we denote in the sequel G = SE(3)× R3.

3.1.1. Position and velocity components

The dynamic model for the position and velocity is obtained thanks
to Newton’s first law [1]. After discretization, it can be written as
the following set of stochastic difference equations:

pk = pk−1 + Te fp(pk−1,vk−1)︸ ︷︷ ︸
f̃p(pk−1,vk−1)

+ wp,k, (2)

vk = vk−1 + Te fv(pk−1,vk−1)︸ ︷︷ ︸
f̃v(pk−1,vk−1)

+ wv,k, (3)

with fp and fv two non-linear functions depending on the earth mass
and its angular velocity and Te the sampling period. As for wp,k and
wv,k, they are respectively the position and velocity noises, due to
unexpected disturbances (lunar attraction, solar winds, ...) and un-
certainties on the physical model. They are assumed to be centered
and normally distributed.

3.1.2. Rotation matrix

We assume the evolution of Rk is a random walk on the LG SO(3)
defined in section 2:

Rk = Rk−1 exp∧SO(3)(wR,k) (4)

where wR,k is zero-mean and normally distributed.
By concatenating (2), (3) and (4), we can rewrite in compact

form:
Xk = fk (Xk−1) exp∧G(wk), (5)

with

fk (Xk−1)=


Rk−1 f̃p(pk−1,vk−1) 03×3 03×3

01×3 1 01×3 01×3

03×3 03×3 I3×3 f̃v(pk−1,vk−1)
01×3 01×3 01×3 1


and wk =

[
wT
R,k,w

T
p,k,w

T
v,k

]T
with wk ∼ N (wk; 0,Wk).

3.2. Measurement model

At time k, not all the objects within the cluster are detected by the
radar sensor. Only a part of them, denoted nk, are reflectors. To
capture this behavior, we assume they spread around the centroid
Mk according to the concentrated Gaussian model:

Zk,i = Mk exp∧SE(3)(εk,i), for i = 1, . . . , nk, (6)

which ensures the ”banana”-like scattering. εk,i ∼ N (εk,i; 0,Sk)
with Sk the cluster extent matrix.

However, the radar only provides position measurements so that
the orientations of the reflectors are not directly observable. The
actual measurements take the form:

zk,i = Π(Zk,i) + uk,i, (7)

where for i = 1, . . . , nk, uk,i is the observation noise that satisfy
uk,i ∼ N (uk,i; 0,Uk). As for Π : SE(3) → R3, it is a mapping
which projects the Euclidean part of an element of SE(3).
In the rest of the paper, we denote zk = {zk,i}nk

i=1, the set of reflec-
tor measurements at time k.

3.3. Proposed algorithm

To jointly address the model non-linearities and intrinsically take
into account the LG properties, an LG-IEKF approach [11] is consid-
ered for the estimation. This variant of the extended Kalman filter on
LG [12] approximates the posterior pdf of interest by a concentrated
Gaussian on LGs, but the prediction and the correction steps are re-
written as optimization problems. The two minimizers provide the
predicted and the corrected states respectively, and the posterior co-
variance matrices are obtained by a Gauss-Laplace approximation
on LG [11]. Classically, a Gauss-Newton (GN) algorithm is used to
perform these optimizations.

3.3.1. Prediction step

In this step, the aim is to approximate the posterior distribu-
tion p(Xk|z1, . . . , zk−1) by a left concentrated Gaussian pdf
NL
G (Xk;µk|k−1,Pk|k−1) and then take the mean µk|k−1 as the

state estimate. Following [10], the joint estimate of the couple
{Xk, Xk−1} is obtained by solving:

{X̂k|k−1, X̂k−1} = arg min
X,X̃

‖ log∨G

(
fk(X̃)−1X

)
‖2Wk

(8)

+ ‖ log∨G

(
µk−1

−1 X̃
)
‖2Pk−1

,

where µk−1 and Pk−1 are respectively the mean and the covariance
matrix of the estimated posterior distribution at the previous time
step p(Xk−1|z1, . . . , zk−1) = NL

G (Xk−1;µk−1,Pk−1). The so-
lution is trivial for X̂k−1 = µk−1 and corresponds to propagating
the state estimate through the dynamic equations without noise for
X̂k|k−1 = µk|k−1 = fk(µk−1). Its components are expressed as:

p̂k|k−1 = f̃p(p̂k−1, v̂k−1) (9)

v̂k|k−1 = f̃v(p̂k−1, v̂k−1) (10)

R̂k|k−1 = R̂k−1. (11)

The predicted covariance is given by:

Pk|k−1 = Fk Pk−1 FTk + Wk (12)

where Fk =
dfk(X̂k−1 exp∧G(δ))

dδ
|δ=0 is the Jacobian matrix of

fk evaluated at X̂k−1.
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3.3.2. Correction step

In this step, the aim is to approximate the posterior pdf
p(Xk|z1, . . . , zk) by a left concentrated Gaussian pdf
NL
G (Xk;µk,Pk). As in the prediction step, µk is considered

for the state estimate X̂k. The difficulty in our context is that
Xk is indirectly related to the observations through the matrices
Zk = {Zk,i}nk

i=1. Thus, we choose to handle them as latent vari-
ables that have to be estimated jointly with Xk. Then, the estimates
{X̂k, Ẑk} are computed by minimizing the opposite of the logarithm
of the posterior pdf:

J(Xk, Zk) =
nk∑
i=1

(
||zk,i −Π(Zk,i)||2Uk

+ || log∨SE(3)(M
−1
k Zk,i)||2Sk

)
+ || log∨G(µ−1

k|k−1Xk)||2Pk|k−1
. (13)

We rewrite it compactly J(Xk, Zk) = ||ψ(Xk, Zk)||2Σk
, where

Σk = blkdiag(Ũk, S̃k,Pk|k−1) with Ũk = Ink � Uk,
S̃k = Ink � Sk, and the notations � and blkdiag referring to
the Kronecker product and a block diagonal matrix respectively.
The minimization of the criterion is carried out with the GN al-
gorithm and the corrected covariance error Pk is obtained by the
Gauss-Laplace approximation in two steps:
1/ The covariance of the joint posterior distribution of {Xk, Zk} is
estimated by

Ck = (JTl Σ−1
k Jl)

−1, (14)

where Jl corresponds to the LG Jacobian matrix ofψ at the lth itera-
tion of GN. The latter is derived using formula of derivatives on LG.
2/ Only the components of Ck corresponding to elements of Xk are
selected to yield Pk.

4. SIMULATION RESULTS

We validate the proposed approach by considering a cluster of spa-
tial objects evolving in low orbit so that each of them is located at
an altitude ranging from 105 to 106 m. The initial velocity of the
centroid is chosen close to 103 m s−1. The velocity, position and
orientation standard deviations appearing in the state models (2), (3)
and (4) are fixed respectively with a value equal to 1 m, 1 m s−1 and
10−4 rad. Furthermore, the sampling period of trajectory Te is taken
small, i.e. equal to 10−2 s. As for the reflector measurements, they
are directly generated according to the models (6) and (7) with a co-
variance matrix Sk which is assumed in this preliminary work to be
known and time-invariant. Finally, a mean number of 70 reflectors
is considered except when it is varied to study the impact on the esti-
mation error. The obtained estimation results are presented in figure
4 wherein mean errors are computed by averagingN = 50 MC runs.
In figure 4-(a), we plot the true trajectory of the centroid of the
”banana”-shape, the estimated one, as well as the cluster of mea-
surements, respectively in blue, red and black. For the sake of clarity,
only the time instants 100 s, 200 s, 300 s and 500 s are represented.
In spite of an initial error of the order of 104 m, we can observe that
the true position of the centroid is recovered in a few iterations. To
better validate the robustness to significant initial position errors, we
represent the global position root mean square error RMSE all along
the trajectory for different initializations in 4-(b). We can observe
that the final RMSE remains inferior to 10 m even if the first guess

is 104 meters away from the true centroid position. Furthermore,
the figure 4-(c) shows an example of the convergence of the GN al-
gorithm implemented at each iteration of the correction step of the
filter. It can be noted that it converges in a few iterations in conjunc-
tion to a small value of the state estimation error computed directly
on the LG as ‖ log∨G

(
X−1
k X̂k

)
‖22. Finally, in figure 4-(d), we test

the influence of the number of reflectors. When it is superior to 70,
the global position RMSE computed over all the trajectory becomes
inferior to 10 m.
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Fig. 4. Obtained results

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we proposed a novel model and algorithm to recur-
sively estimate the trajectory and the dynamics of the centroid of a
cluster of space debris spreading according to a ”banana”-like shape.
We formalize the problem as a filtering problem on LG to obtain a
set of measurements spatially distributed according to this specific
configuration. The proposed algorithm to perform the estimation is
a variant of the LG-IEKF where the update step was modified to ad-
dress the tracking of an extended object. A perspective is to include
the estimation of the SPD extent matrix in the algorithm. By using
an eigenvalue decomposition, the latter can indeed be reparameter-
ized to belong to a LG so that the presented formalism is well-suited
to also address this issue.
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