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ABSTRACT

Conventional approaches to matrix completion are sensitive
to outliers and impulsive noise. This paper develops robust
and computationally efficient M-estimation based matrix
completion algorithms. By appropriately arranging the ob-
served entries, and then applying alternating minimization,
the robust matrix completion problem is converted into a set
of regression M-estimation problems. Making use of differ-
entiable loss functions, the proposed algorithm overcomes a
weakness of the ℓp-loss (p ≤ 1), which easily gets stuck in
an inferior point. We prove that our algorithm converges to
a stationary point of the nonconvex problem. Huber’s joint
M-estimate of regression and scale can be used as a robust
starting point for Tukey’s redescending M-estimator of re-
gression based on an auxiliary scale. Numerical experiments
on synthetic and real-world data demonstrate the superiority
to state-of-the-art approaches.

Index Terms— Low-rank factorization, matrix comple-
tion, M-estimation, robust statistics, image inpainting

1. INTRODUCTION

Matrix completion refers to recovering a low-rank matrix
from a subset of its entries [1]–[5]. It has numerous appli-
cations in recommender systems, computer vision, image
inpainting, biomedicine, and information retrieval [1]–[9].
Generally speaking, matrix completion approaches may be
loosely grouped into three categories. The first is based on nu-
clear norm [10]–[12] or Schatten p-norm [13] minimization.
The second is based on the hard thresholding, i.e., projection
onto nonconvex rank constraint sets [15]–[18], The third uses
direct matrix factorization to ensure low-rank [6, 14, 19, 20],
and has the lowest computational complexity, making it the
most attractive approach in the “big data” setting.

The occurrence of outliers and impulsive noise, e.g.,
ratings with frauds in recommender systems [1], and salt-
and-pepper noise in image processing [14], is common in
many practical applications [21, 22]. As conventional matrix
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completion methods are based on quadratic loss functions,
their performance significantly degrades in the presence of
impulsive noise or outliers. Therefore, ℓp-loss (p ≤ 1)
based schemes have been recently developed. However,
there are two major drawbacks of the ℓp-loss based methods.
First, although providing robustness in the face of outliers,
they may be statistically inefficient with respect to addi-
tional background noise. Second, they easily get stuck at
an inferior solution rather than a stationary point when al-
ternating minimization is employed to solve the nonsmooth
ℓp-minimization [23, 24].

The contribution of this paper is to propose robust and
computationally efficient matrix completion approaches
based on M-estimation and matrix factorization. By ap-
propriately arranging the observed entries, and then applying
alternating minimization, we cast the robust matrix comple-
tion problem into a set of regression M-estimation problems.
Since our approach uses differentiable, and statistically ef-
ficient loss functions, such as, Huber’s and Tukey’s, we
overcome the above mentioned drawbacks of the ℓp-loss
(p ≤ 1). We prove that our proposed algorithm converges
to a stationary point of the nonconvex problem, and provide
an expression for the computational complexity for Huber’s
M-estimation based approach.

The remainder of the paper is organized as follows. Sec-
tion 2 details the proposed approaches. Section 3 contains
numerical experiments with synthetic and real data. Finally,
Section 4 concludes the paper.

2. ROBUST M-ESTIMATION BASED APPROACH

The observed matrix XXX ∈ Rn1×n2 is modeled as

XXX =MMM +SSS +NNN, (1)

where MMM is a low-rank matrix of rank-r, SSS is an entry-wise
sparse outlier matrix, andNNN represents the background noise.
Our goal is to recover the low-rank component MMM from par-
tially observed entries of XXX corrupted by noise and outliers.

In our approach, the outlier-robust “norm” ofXXX is defined
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as

∥XXX∥σ,c =
n1∑
i=1

n2∑
j=1

ρ
(xij

σ

)
, (2)

where σ > 0 is the scale parameter, xij is the (i, j)th entry of
XXX , and ρ(·) is a differentiable loss function. In this paper, we
consider Huber’s loss function

ρhub(x) =

{
1
2x

2, |x| ≤ c
c|x| − 1

2c
2, |x| > c

(3)

and Tukey’s loss function

ρtuk(x) =

{
1
2x

2 − x4

2c2 + x6

6c4 , |x| ≤ c
c2

6 , |x| > c
(4)

for which the associated tuning parameter c trades off the ef-
ficiency and robustness. For example, c = 1.345 and c =
4.685, respectively, yield 95% asymptotic relative efficiency
for Huber’s loss and Tukey’s loss functions. Unlike the ℓ1-
loss, Huber’s and Tukey’s losses are differentiable. Further,
Huber’s loss is convex while Tukey’s loss is nonconvex.

To describe missing data, the row-column indices of
the partially observed entries are collected in the set Ω ⊂
{1, . . . , n1} × {1, . . . , n2}. We use XXXΩ ∈ Rn1×n2 to de-
note the projection of the XXX onto Ω. As a result, we have
[XXXΩ]ij = 0 if (i, j) /∈ Ω and [XXXΩ]ij = xij if (i, j) ∈ Ω.

Popular methods for matrix completion solve the problem
of Schatten p-norm regularization [13]:

min
MMM

∥(MMM)Ω −XXXΩ∥2F + γ∥MMM∥pSp
. (5)

Here, γ > 0 is the regularization factor and ∥MMM∥Sp refers to
the Schatten p-norm that promotes rank-sparsity. When p =
1, ∥MMM∥Sp reduces to the nuclear norm [4], [10]–[12], denoted
by ∥MMM∥nuc. Methods that are based on (5) require computing
the singular value decomposition (SVD) of an n1×n2 matrix
at each iteration, resulting in a high complexity. To reduce
complexity, we use direct matrix factorization M̂MM = UUUVVV to
make the estimate M̂MM low-rank, where UUU ∈ Rn1×r and VVV ∈
Rr×n2 . In the presence of outliers, our robust M-estimation
based matrix completion is expressed as:

min
UUU,VVV

∥(UUUVVV )Ω −XXXΩ∥σ,c. (6)

Herein, the scale parameter σ is unknown and is estimated
jointly with (UUU,VVV ), whereas c is set in advance, and is con-
sidered as a constant.

To solve (6), an alternating minimization strategy is ap-
plied. To be more specific, at the (k + 1)th iteration (k =
0, 1, 2, . . .), VVV and UUU are alternately minimized:

VVV k+1 = argmin
VVV

∥(UUUkVVV )Ω −XXXΩ∥σ,c (7)

UUUk+1 = argmin
UUU

∥(UUUVVV k+1)Ω −XXXΩ∥σ,c. (8)

Note that (8) and (7) have the same structure. Thus, we only
discuss how to solve (7), because (8) is solved analogously.
With the following definitions:

• uuu⊤
i ∈ R1×r, and vvvj ∈ Rr, respectively denote the ith

row of UUU and jth column of VVV , where i = 1, . . . , n1

and j = 1, . . . , n2

• Ij = {j1, . . . , j|Ij |} ⊆ {1, . . . , n1}, represents the set
containing the row indices for the jth column, j =
1, . . . , n2, of Ω, where,

∑n2

j=1 |Ij | = |Ω|, and, in gen-
eral, |Ij | > r

• UUUk
Ij

∈ R|Ij |×r is the matrix containing the |Ij | rows of
UUUk that are indexed by Ij

• bbbIj = [xj1j , · · · , xj|Ij |j
]⊤ ∈ R|Ij |,

Eq. (7) can be rewritten as a series of robust linear regression
problems that can be solved in parallel, i.e.,

min
vvvj

{
fσ(vvvj)

∆
= ∥UUUk

Ij
vvvj − bbbIj∥σ,c

}
, j = 1, . . . , n2. (9)

Since σ is unknown, and a preliminary estimate is difficult
to obtain, we propose to solve (9) using Huber’s joint M-
estimation of regression and scale approach

min
vvvj ,σ>0

Lhub(vvvj , σ)
∆
= σ

∑
i∈Ij

ρhub

(
xij − (uuu⊤

i )
kvvvj

σ

)
+ |Ij |(ασ)

(10)
where α is a fixed scaling factor to obtain Fisher consistency
of the scale estimate σ̂. Eq. (10) is jointly convex in (vvvj , σ).
Therefore, the global minimizer (v̂vvj , σ̂) is a stationary point
of Huber’s criterion, and a solution can be found by solv-
ing the M-estimating equations obtained by setting the gra-
dient of Lhub(vvvj , σ), with respect to its arguments, to zero.
Since the complexity for solving (10) is O(|Ij |r2), the per-
iteration complexity of the matrix completion is O(|Ω|r2) due
to
∑n2

j=1 |Ij | = |Ω|. The Huber’s M-estimation based matrix
completion is summarized in Algorithm 1.

As mentioned in Section 1, there is no theoretical guar-
antee that the alternating ℓp-minimization method [14] con-
verges to a stationary point. In contrast, Huber’s M-estimator,
as computed in Algorithm 1, converges to a stationary point.
This is stated in the following theorem.

Theorem The sequence generated by Algorithm 1, i.e.,
{UUUk,VVV k}, converges to a stationary point of the noncon-
vex problem of (6).

Proof. We first prove that the function

fσ(zzz) = ∥UUUk
Ij
zzz − bbbIj∥σ,c

with zzz ∈ Rr, whose form is the same as the objective function
in (9), is strictly convex. Define the following affine transfor-
mation Rr → R|Ij | by:

rrr(zzz) = UUUk
Ij
zzz − bbbIj . (11)
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Algorithm 1 Robust Matrix Completion via Huber’s M-
Estimation

Input: XXXΩ, Ω, and rank r
Initialize: Randomly initialize UUU0 ∈ Rn1×r

Determine {Ij}n2
j=1 and {Ji}n1

i=1 according to Ω.
for k = 0, 1, · · · do

// Fix UUUk, optimize VVV

vvvk+1
j = argmin

vvvj ,σ

σ
∑
i∈Ij

ρhub

(
xij − (uuu⊤

i )
kvvvj

σ

)
+|Ij |(ασ)}

for all j = 1, 2, · · · , n2.
// Fix VVV k+1, optimize UUU

(uuu⊤
i )

k+1 = arg min
uuu⊤

i ,σ

σ
∑
j∈Ji

ρhub

(
xij − uuu⊤

i vvv
k+1
j

σ

)
+|Ji|(ασ)}

for all i = 1, 2, · · · , n1.
Stop if a termination condition is satisfied.

end for
Output: M̂MM = UUUk+1VVV k+1

Consider the function

gσ(rrr) = ∥rrr∥σ,c =
|Ij |∑
i=1

ρhub

(ri
σ

)

with ri being the ith entry of rrr. Since the univariate Huber’s
loss function ρhub (ri/σ) is strictly convex with respect to ri ∈
R, the sum of strictly convex functions, i.e., gσ(rrr), is also
strictly convex. Then, ∀ rrr1, rrr2 ∈ R|Ij |, rrr1 ̸= rrr2, and α ∈
(0, 1), we have

gσ(αrrr1 + (1− α)rrr2) < αgσ(rrr1) + (1− α)gσ(rrr2). (12)

Let ∀ zzz1, zzz2 ∈ Rr, whose affine transform applying (11), re-
spectively, is rrr1 = UUUk

Ij
zzz1 − bbbIj and rrr2 = UUUk

Ij
zzz2 − bbbIj . We

first need to prove that: if zzz1 ̸= zzz2, then rrr1 ̸= rrr2. Due to
|Ij | > r, UUUk

Ij
∈ R|Ij |×r for all j = 1, 2, · · · , n2, are full col-

umn rank. Then, only 000 is in the null space of UUUk
Ij

. That is,
we have UUUk

Ij
zzz = 000 ⇔ zzz = 000 and UUUk

Ij
zzz ̸= 000 ⇔ zzz ̸= 000. Thus,

if zzz1 ̸= zzz2, then rrr1 ̸= rrr2 due to rrr1 − rrr2 = UUUk
Ij
(zzz1 − zzz2).

For ∀ zzz1 ̸= zzz2 and α ∈ (0, 1), it follows that

fσ(αzzz1 + (1− α)zzz2)

= ∥UUUk
Ij
(αzzz1 + (1− α)zzz2)− bbbIj∥σ,c

= ∥α(UUUk
Ij
zzz1 − bbbIj ) + (1− α)(UUUk

Ij
zzz2 − bbbIj )∥σ,c

= ∥αrrr1 + (1− α)rrr2∥σ,c
= gσ(αrrr1 + (1− α)rrr2)

< αgσ(rrr1) + (1− α)gσ(rrr2) (13)
= αfσ(zzz1) + (1− α)fσ(zzz2). (14)

Note that when deriving (13), we have used the important fact
that rrr1 ̸= rrr2 due to zzz1 ̸= zzz2 and the property of strict convex-
ity of gσ(rrr) in (12).

Since fσ(zzz) is strictly convex, the minimization problems
of (9) have unique solution. That is, all optimal {vvvj}n2

j=1 are
uniquely determined, and it follows that the optimal solution
of (7) is unique. Clearly, the optimal solution of (8) is also
unique since (7) and (8) have the same structure. Algorithm 1
is in fact a block coordinate descent method with two blocks
UUU and VVV . We have proved that the minimizers of each block
are unique. In addition, the objective function of (6) is contin-
uously differentiable. According to Proposition 2.7.1 in [25],
the sequence generated by Algorithm 1, i.e., {UUUk,VVV k}, con-
verges to a stationary point. �

Remark: Although the Huber’s loss function has been em-
ployed for matrix completion very recently [1], our algorithm
is different from that of [1]. The estimator of [1] is based on
the nuclear norm regularization:

min
MMM

∑
(i,j)∈Ω

ρhub

(
[MMM ]ij − xij

σ

)
+ γ∥MMM∥nuc (15)

which requires SVD at each iteration and has a high complex-
ity. Our approach is based on matrix factorization and more
computationally efficient.

The estimate obtained from Algorithm 1 can be used as
a robust starting point for Tukey’s M-estimator, which solves
the nonconvex optimization problem

min
vvvj

Ltuk(vvvj , σ)
∆
=
∑
i∈Ij

ρtuk

(
xij − (uuu⊤

i )
kvvvj

σhub

)
(16)

using an iteratively reweighted least-squares (IRWLS) algo-
rithm. For further details on Huber’s joint M-estimation of
regression and scale approach, and on M-estimation of regres-
sion with an auxiliary scale estimate, see Chapter 2 of [22].

3. SIMULATION RESULTS

In all simulations, we use the MATLAB functions hubreg,
and Mreg of the RobustSP toolbox [22], and set c = 1.345
for Huber’s estimator while c = 1.481 for Tukey’s estimator.
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Results for Synthetic Random Data: We set n1 = 150,
n2 = 300, and r = 10. The proposed methods are compared
with SVT [12], SVP [15], AP [17], WNNM [9], RPCA [27],
and VBMFL1 [28]. The matrix is generated by XXX = XXX1XXX2

where XXX1 ∈ Rn1×r and XXX2 ∈ Rr×n2 are Gaussian random
matrices. Then, impulsive noise is added, which follows the
Gaussian mixture model (GMM). The GMM noise contains
two components. The component with smaller variance mod-
els the background noiseNNN while the one with larger variance
models the sparse outlier SSS. Fig. 1 shows the normalized root
mean square error (RMSE) versus signal-to-noise ratio (SNR)
where 45% random entries ofXXX are observed. The SNR is de-
fined as SNR = ∥XXXΩ∥2F/(|Ω|σ2

n) with σ2
n denoting the noise

variance. The RMSEs are the average of 100 independent tri-
als. Fig. 2 plots the normalized RMSE versus percentage of
observations at SNR = 9 dB.
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Fig. 1. RMSE versus SNR in GMM noise.
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Fig. 2. RMSE versus percentage of observations.

The simulations show that the ℓ2-loss based SVT, SVP,
WNNM and ℓ2-regression are not robust to impulsive noise,
and that the proposed Huber and Tukey M-estimators out-
perform the state-of-the-art robust schemes, i.e., ℓ1-AP, ℓ1-

TukeyHuber`1-reg

`2-regoriginal incomplete noisy

Fig. 3. Image inpainting in salt-and-pepper noise.

regression, RPCA and VBMFL1 in terms of robustness and
estimation accuracy.

Image Inpainting in Salt-and-Pepper Noise: We apply ro-
bust matrix completion to image inpainting. A building image
is adopted [14]. The missing entries correspond to “ICCV”,
“2009”, and “LRTC”. The observed entries are contaminated
by salt-and-pepper noise. Fig 3 shows the original image,
and the noisy version with missing and recovered values. The
rank is set as r = 6 for all methods. The peak signal-to-noise
ratio (PSNR)

PSNR = 2552/MSE (17)

is taken as the performance measure, where 255 is the peak
value of a gray-scale image and MSE = ∥M̂MM −XXX∥2F/(n1n2),
with M̂MM being the estimate of a matrix completion method.
The PSNR of the noisy image with missing values without
any processing is taken as the baseline. The PSNRs (in dB)
of the baseline, ℓ2-regression, ℓ1-regression, Huber and Tukey
based methods are 10.83, 19.18, 21.61, 23.29, and 23.71, re-
spectively, at SNR = 6 dB. It is observed the proposed M-
estimators have the best recovery performance.

4. CONCLUSION

A robust and computationally efficient M-estimation based
matrix completion approach, using Huber’s and Tukey’s M-
estimators has been proposed. Through alternating minimiza-
tion, the matrix completion problem is decomposed into a se-
ries of regression M-estimation problems. The approach out-
performs the existing ℓp-minimization method when outlier
and background noise coexist. We prove that our algorithm
converges to a stationary point of the nonconvex problem, i.e.,
does not get stuck at an inferior solution. The per-iteration
complexity of M-estimation based matrix completion using
Huber’s loss is O(|Ω|r2), which makes it attractive tool for
the “big data” setting. Numerical experiments illustrate the
superiority of the proposed approach.
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