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ABSTRACT

We address the problem of source separation from noisy mixtures
in a semi-blind scenario, with stationary, temporally-diverse Gaus-
sian sources and known spectra. In such noisy models, a dilemma
arises regarding the desired objective. On one hand, a “maximally
separating” solution, providing the minimal attainable Interference-
to-Source-Ratio (ISR), would often suffer from significant residual
noise. On the other hand, optimal Minimum Mean Square Error
(MMSE) estimation would yield estimates which are the “least dis-
torted” versions of the true sources, often at the cost of compro-
mised ISR. Based on Maximum Likelihood (ML) estimation of the
unknown underlying model parameters, we propose two ML-based
estimates of the sources. One asymptotically coincides with the
MMSE estimate of the sources, whereas the other asymptotically co-
incides with the (unbiased) “least-noisy maximally-separating” solu-
tion for this model. We prove the asymptotic optimality of the latter
and present the corresponding Cramér-Rao lower bound. We discuss
the differences in principal properties of the proposed estimates and
demonstrate them empirically using simulation results.

Index Terms— Semi-blind source separation, indepen-
dent component analysis, maximum likelihood, minimum
mean square error, least squares.

1. INTRODUCTION

In classical Independent Component Analysis (ICA, [1, 2]) /
Blind Source Separation (BSS, [3–5]), the mixtures are as-
sumed to be linear combinations of mutually statistically in-
dependent source signals. The term “blind” refers to the fact
that no further prior knowledge is available.

However, in some cases, frequently referred to as “semi-
blind” [6, 7], some a-priori statistical information on the
sources is available. A particular case is when the sources’
probability distributions are known (possibly up to some un-
known parameters), thus enabling the Maximum Likelihood
(ML) approach [8–11]. In the noiseless model, the ML Esti-
mate (MLE) of the demixing matrix enjoys the equivariance
property (e.g., [12, 13]), which essentially means that the re-
sulting Interference-to-Source Ratio (ISR) does not depend
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on the true value of the mixing matrix but only on the sources’
statistics. Unfortunately, this appealing property holds true
(for the MLE, as well as for some other separation algo-
rithms) only in the noise-free model, which is possibly the
reason why the noisy case has seen less theoretical treatment
in the literature than its noiseless counterpart. A few repre-
sentative examples of separation approaches for noisy mod-
els are Joint Approximate Diagonalization of Eigen-matrices
(JADE, Cardoso and Souloumiac [14]) for the separation
of non-Gaussian sources; an ML approach, based on the
expectation-maximization algorithm, for Gaussian mixtures
sources (Moulines et al. [15]) and the Second-Order Blind
Identification (SOBI, Belouchrani et al. [16]) algorithm for
stationary sources. Among these, only SOBI enables separa-
tion of Gaussian sources1.

In this paper we proceed to explore noisy mixtures of sta-
tionary (temporally-diverse) Gaussian sources in a semi-blind
scenario, pursuing optimal recovery of the sources in two al-
ternative senses. Based on our recent work [17], we propose
two ML-based estimates of the sources: One is asymptot-
ically the Minimum Mean Square Error (MMSE) estimate
of the sources, whereas the other is asymptotically the (un-
biased) “least-noisy maximally-separating” solution for this
model. We compare these estimates and shed some light on
the trade-off involved.

1.1. Notations

We use x,x and X for a scalar, column vector and matrix,
resp. The superscripts (·)T and (·)−1 denote the transposition
and inverse operators, resp. E[·] denotes expectation. The
Kronecker product is denoted by ⊗. We also denote by IK

the K × K identity matrix, and the pinning vector ek de-
notes the k-th column of IK . We define vec(·) as the operator
which concatenates the columns of an M ×N matrix into an
MN×1 column vector. The Diag(·) operator forms anN×N
diagonal matrix from its N -dimensional vector argument. Fi-
nally, O is the all zeros-matrix (with proper dimensions).

1Under the second-order statistics identifiability condition [16]
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2. PROBLEM FORMULATION

Consider the following M sources - L sensors static, instan-
taneous, linear model

X = AS + V ∈ RL×T , (1)

where S = [s1 · · · sM ]
T ∈ RM×T denotes a matrix of M

source signals of length T , A ∈ RL×M is a (deterministic)
mixing matrix, V = [v1 · · · vL]

T ∈ RL×T denotes a matrix
of L additive noise signals (one for each sensor), where we
assume L ≥ M , and the observed mixture signals are given
by X = [x1 · · · xL]

T ∈ RL×T . In our semi-blind model,
we assume that all the source signals are zero-mean station-
ary Gaussian processes with known Positive-Definite (PD)
Toeplitz temporal covariance matrices C(m)

s , E
[
smsTm

]
(for every m ∈ {1, . . . ,M}), distinct from one another. As
in the standard ICA model, the sources s1, . . . , sM ∈ RT×1

(i.e., the rows of S) are assumed to be mutually statisti-
cally independent and the mixing matrix A is assumed to
be unknown. Furthermore, we assume that the noise signals
v1, . . . ,vL ∈ RT×1 from all the sensors (i.e., the rows of
V ) are mutually statistically independent, temporally-white
Gaussian noise processes, each with a temporal covariance
matrix E

[
v`v

T
`

]
= σ2

v`
IT (for every ` ∈ {1, . . . , L}), and

are also statistically independent of all the sources. The
noises’ variances σ2

v1 , . . . , σ
2
vL ∈ R+ are assumed to be (de-

terministic) unknown and are denoted collectively in (spatial)
matrix form as Λ , Diag

([
σ2
v1
· · ·σ2

vL

])
∈ RL×L.

Thus, given the measurement matrix X and the sources’
covariances {C(m)

s }Mm=1, our goal is to separate and esti-
mate the unobservable sources s1, . . . , sM . Note that for this
model, in contrary to the classical (fully blind) model, no per-
mutation nor scale ambiguities exist, and the only remaining
inevitable ambiguities are sign ambiguities.

As we have recently shown in [17], due to the stationarity
and Gaussianity of all the signals in (1), the measurements’
distributions, parametrized by the unknown model parameters
A,Λ, may be written conveniently by resorting to an equiva-
lent frequency-domain representation of the problem. Conse-
quently, the MLEs of A,Λ, denoted by “AML,“ΛML, resp., may
be obtained by solving the resulting likelihood equations (eq.
(20) in [17]) using, e.g., Fisher’s scoring algorithm (see sec-
tion III-B in [17]). Based on these MLEs, we propose the
“least-noisy maximally-separating” solution, presented in the
following section.

3. OPTIMAL SOURCES RECOVERY

Assume for the moment that A and Λ are known, and con-
sider the following equivalent representation of (1)

x = (A⊗ IT ) s+ v ∈ RLT×1, (2)

where x , vec
Ä
XT
ä
∈ RLT×1, v , vec

Ä
V T
ä
∈ RLT×1

and s , vec
Ä
ST
ä
∈ RMT×1.

3.1. Minimum MSE vs. Maximum Separation
In order to consider optimal recovery of the sources s from
x, unlike in the noiseless case, it is crucial to explicitly de-
fine what the desired objective is. One option is to obtain the
“closest possible” estimate of the sources, e.g., in the sense of
MMSE. In this case, since x and s are jointly Gaussian, the
MMSE estimate of s from x (which is also the linear MMSE
estimate of s from x) is given by

ŝMMSE , E [s|x] = CsxC
−1
x x ∈ RMT×1, (3)

where

Csx , E
[
sxT

]
= Cs

Ä
AT ⊗ IT

ä
∈ RMT×LT , (4)

Cx , E
[
xxT

]
=

(A⊗ IT )Cs

Ä
AT ⊗ IT

ä
+Λ⊗ IT ∈ RLT×LT , (5)

Cs , E
[
ssT

]
=

C
(1)
s . . . O
...

. . .
...

O . . . C(M)
s

 ∈ RMT×MT . (6)

Accordingly, the m-th source MMSE estimate is given by

(ŝm)MMSE = Ŝ
T

MMSEem ∈ RT×1, where ŝMMSE = vec
(
Ŝ

T

MMSE

)
.

This estimate attains the minimal attainable MSE matrix of
any estimate, given by

CMMSE , E
î
(ŝMMSE − s) (ŝMMSE − s)

T
ó
= Cs−CsxC

−1
x Cxs.

(7)
Another possible objective is to obtain “maximal sepa-

ration” of the sources, even at the cost of a compromised
MSE in their estimates. This approach is often termed in
the context of communication systems as “zero-forcing”
(e.g., [18, 19]) and is known to minimize all (spatial) in-
tersymbol interference. In ICA, a “maximally-separating”
solution minimizes the resulting ISR, and in semi-blind sce-
narios this solution is obtained by applying the (pseudo-)
inverse of the MLE of the mixing matrix A to the mix-
tures’ matrix X (as shown in, e.g., [13]). However, if the
number of sensors is higher than the number of sources,
i.e., L > M , then the maximally-separating solution is
not unique, and the set of maximally-separating solutions,
which would all yield exactly the same ISR, is given by

ŜW =
{
Ŝ ∈ RM×T : Ŝ =

Ä
ATWA

ä−1
ATWX

}
and is

parametrized by a PD weight matrix W ∈ RL×L. Indeed,

∀Ŝ ∈ ŜW : Ŝ =
Ä
ATWA

ä−1
ATWX = (8)Ä

ATWA
ä−1

ATW (AS + V ) = (9)

S +
Ä
ATWA

ä−1
ATWV , S︸︷︷︸

zero ISR

+ V W︸︷︷︸
“W -colored”

, (10)

regardless of the choice of the weight matrix W , where V W

is the “W -colored” noise. The set ŜW is, of course, none
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other than the Weighted LS (WLS) solutions set, which is ob-
tained by minimizing the WLS criterion at each time-instant
when the sources are considered fixed. Nevertheless, one par-
ticularly interesting solution from ŜW is the Optimally WLS
(OWLS) solution, which is obtained by choosing the weight
matrix as the inverse of the (spatial) noise covariance matrix,
i.e., W = Λ−1, and is therefore given by

ŜOWLS ,
Ä
ATΛ−1A

ä−1
ATΛ−1X ∈ RM×T . (11)

This is in fact the “least-noisy maximally-separating” solu-
tion, in the sense that among all maximally-separating so-
lutions ŜW , (11) attains the minimal noise, such that each
column of V Λ−1 has the minimal attainable covariance ma-
trix by virtue of the Gauss-Markov theorem [20]. Accord-
ingly, (11) is also commonly referred to (in classical Estima-
tion Theory) as the Best Linear Unbiased Estimate (BLUE).
Moreover, since in this case the additive noise V is Gaussian,
the BLUE is also the MLE of the sources, which is an efficient
estimate ([21]) in this problem (even not asymptotically), and
therefore is also the Uniformly Minimum-Variance Unbiased
Estimate (UMVUE) [22].

3.2. The ML-Based MMSE and OWLS Solutions
Now, recall that A and Λ are in fact unknown. Therefore,
based on similar logic of the ML-based MMSE estimate of
the sources (presented in [17]), given by

ŝML-MMSE , “Csx
“C−1x x, (12)

where “Csx and “Cx are the MLEs of Csx and Cx
2, resp., we

suggest the ML-based OWLS estimate of the sources

ŜML-OWLS ,
(“AT

ML
“Λ−1ML
“AML

)−1 “AT

ML
“Λ−1ML X, (13)

based only on the measurements X . We stress that for any fi-
nite sample size T , ŜML-OWLS 6= ŜOWLS almost surely. However,
the estimate (13) enjoys an attractive asymptotic optimality
property, as we show in the following Theorem.

Theorem 1 (ML-based OWLS convergence to the OWLS)
Let “AML, “ΛML be the MLEs of A, Λ, resp., and let ŜML-OWLS be
the ML-based OWLS estimate of S as defined in (13). Then
for T →∞ ŜML-OWLS converges in probability to ŜOWLS.

Proof 1 By definition, “AML, “ΛML are the MLEs of A, Λ, resp.
Thus, in particular, they are consistent ([23]). Therefore, from
the continuous mapping theorem [24], which states that con-
tinuous functions are limit-preserving even if their arguments
are sequences of random variables, we have thatÄ“AML,“ΛML

ä
p−−−−→

T→∞
(A,Λ)⇒ ŜML-OWLS

p−−−−→
T→∞

ŜOWLS , (14)

since the OWLS is a continuous function of A and Λ.
�

2Obtained by substituting ÂML, Λ̂ML for A,Λ, resp., in (4)-(5)

Hence, the estimate (13) asymptotically coincides with the
(clairvoyant) least-noisy maximally-separating solution (11),
which is the UMVUE, and as T grows, its conditional MSE
given the sources decreases and converges (in probability) to

CCRLB ,
Ä
ATΛ−1A

ä−1
, (15)

which is the well-known Cramér-Rao Lower Bound (CRLB)
on the conditional covariance matrix (given the sources) of
any unbiased estimate of the sources, when the nuisance pa-
rameters A and Λ are assumed known. Thus, Theorem 1
implies that (13) is also asymptotically efficient.

We note in passing that one may estimate the bounds
CMMSE and CCRLB by substituting into (7) and (15), resp., the
MLEs “AML and “ΛML. The obtained estimates of the bounds
would be their MLEs due to the invariance property of the
MLE [25], and therefore would serve as consistent estimates.

3.3. The ML-based MMSE vs. The ML-based OWLS
Stemming from two different objectives, although both ML-
based estimates (MMSE and OWLS) share asymptotic op-
timality (w.r.t. different optimality criteria), these estimates
differ quite significantly in some important properties:

• Unbiasedness - Define a “strongly unbiased” estimate
of a source sm as an estimate whose conditional mean
given all the sources is sm (for m = 1, . . . ,M ). Then,
while the ML-based OWLS is asymptotically strongly
unbiased, the ML-based MMSE is strongly biased even
when it fully coincides with the (clairvoyant) MMSE
estimate (3). Nevertheless, the latter attains the lowest
attainable MSE thanks to its bias.

• Memorylessness - When the MLEs “AML, “ΛML are con-
sidered fixed, the ML-based OWLS is obtained by an
instantaneous (memoryless) transformation of the re-
ceived signals, while the ML-based MMSE applies fil-
tering to the received signals, which is certainly not an
instantaneous (memoryless) operation, like the original
mixing operation is. Therefore, unlike the ML-based
OWLS, the ML-based MMSE estimate distorts the sig-
nals with frequency-selective filtering and separation.

• Consistent Separation - The ML-based OWLS asymp-
totically yields zero ISR, meaning perfect separation,
and is therefore considered as a consistent separator.
Conversely, the ML-based MMSE compromises (con-
sistent) separation for the sake of the minimal total
distortion (considering both noise and residual energy
from other sources), in the sense of MMSE.

We stress that while (3) and (11), given the nuisance param-
eters A and Λ, are both linear estimates of the sources, the
ML-based estimates (12) and (13) are certainly not linear esti-
mates, since “AML and “ΛML are nonlinear functions of the mea-
surements X (as they are solutions of the (nonlinear) likeli-
hood equations, prescribed in [17], for the model (1)).
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(a) (b) (c)
Fig. 1: MSE vs. T . Empirical results were obtained by 100 independent trials. (a) MSE of ŝ1 (b) MSE of ŝ2 (c) MSE of ŝ3

Fig. 2: Average GISR vs. T (using the legend of Fig. 1).
Empirical results were obtained by 100 independent trials.

s1 s2 s3
AR(1) Parameter 0.23 0.76 −0.54

Table 1: AR(1) parameters of the sources.

4. SIMULATION RESULTS
We consider a scenario where A ∈ R4×3 and the M = 3
sources are all Gaussian Auto-Regressive (AR) processes
of order 1 (AR(1)), each with unit variance and an AR
parameter as presented in Table 1. The elements of the
mixing matrix were drawn (once) independently from a
standard Normal distribution and the (different) noise vari-
ances in each of the sensors were set to

[
σ2
v1 σ

2
v2
σ2
v3 σ

2
v4

]
=[

−10 − 13 1
3 − 16 2

3 − 20
]
[dB]. The MLEs of A and Λ

were obtained by Fisher’s scoring algorithm (as described in
detail in [17]). Thereafter, the estimates (12) and (13) were
obtained based on these MLEs.

Fig. 1 presents the empirical MSEs of the ML-based
MMSE and OWLS estimates, as well as the theoretical lower
bounds (the diagonals of CMMSE and CCRLB), versus the sample
size T . As seen in all three figures, the empirical MSEs ex-
hibit a convergence trend towards their corresponding bound,
demonstrating the asymptotic optimality of the ML-based
estimates. Moreover, the superiority of the ML-based MMSE
over the ML-based OWLS, in this sense, is also evident.

Next, we compare the ML-based estimates w.r.t. their

separation performance evaluated by the Generalized ISR
(GISR), defined as follows. For an estimate of the sources
of the form ŝ = ‹Bx ∈ RMT×1, where ‹B ∈ RMT×LT , we
define the GISR (for all i 6= j ∈ {1, . . . ,M}) as

GISRij ,

Tr

Ç
E
ñ‹T (i,j)

Å‹T (i,j)
ãTôå

Tr

Ç
E
ñ‹T (i,i)

Å‹T (i,i)
ãTôå · Tr

Ä
C(j)

s

ä
Tr
Ä
C(i)

s

ä , (16)

where the generalized global demixing-mixing matrix is de-
fined as ‹T , ‹B (A⊗ IT ), denoting its block-partition as‹T , ‹T (1,1)

. . . ‹T (1,M)

...
. . .

...‹T (M,1)
. . . ‹T (M,M)

 ∈ RMT×MT . (17)

Note that while the classical definition of ISR (e.g., [13]) is re-
stricted to instantaneous (memoryless) separation, the GISR
extends the same notion to general (not necessarily instanta-
neous) linear separators, and coincides with ISR for instanta-
neous separation.

Fig. 2 presents the resulting GISR elements of both ML-
based estimates (12) and (13). Here, the superiority of the
ML-based OWLS over the ML-based MMSE (in this sense) is
demonstrated, in addition to its separation consistency prop-
erty, which is reflected by the (asymptotically) constant rate
of decay of the GISR, as expected.

5. CONCLUSION
In the context of semi-blind separation of temporally-diverse
Gaussian sources, we contrasted the ML-based MMSE and
OWLS estimates of sources. While compromising the overall
MSE, the ML-based OWLS estimate was shown (both analyt-
ically and empirically) to be asymptotically efficient, attain-
ing the CRLB on the MSE of any unbiased estimate of the
sources, while enjoying separation consistency.

We note that the proposed estimates may also be used for
non-Gaussian sources, based on Gaussian Quasi ML (QML)
estimation, which was shown in [17] to be consistent. In
such cases the QML-based OWLS estimate would retain its
asymptotic efficiency.
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