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ABSTRACT

Graph sampling with independent noise towards minimum
mean square error (MMSE) leads to the known A-optimality
criterion, which is computation-intensive to evaluate and
NP-hard to optimize. In this paper, we propose a new low-
complexity sampling strategy based on Neumann series that
circumvents large matrix inversion and eigen-decomposition.
We first prove that a DC-shifted A-optimality criterion is
equivalent to an objective computed using the inverse of a
sub-matrix of an ideal graph low-pass (LP) filter. The LP
filter matrix can be approximated efficiently via fast Graph
Fourier Transform (FGFT). Using the shifted A-optimality
objective as a proxy, we then propose a fast algorithm to
greedily select samples one-by-one based on a matrix in-
version lemma with simple matrix updates. We show that
the obtained solution has a performance upper bound via
super-modularity analysis. Simulation results show that our
proposed sampling strategy has lower complexity and outper-
forms several existing deterministic sampling schemes.

Index Terms— Graph signal processing (GSP), sam-
pling, optimal design, matrix inversion.

1. INTRODUCTION

Graph signal processing (GSP) studies signals that reside on
irregular data kernels described by graphs [1–3]. The spec-
trum of a graph signal x ∈ RN is defined by the N eigen-
vectors of the graph Laplacian matrix [4] (or the adjacency
matrix [2]) that span the signal space. A bandlimited graph
signal of cutoff frequency K has non-zero coefficients only
for the K eigenvectors associated with the K smallest eigen-
values. Sampling and reconstruction of bandlimited signals is
a classical signal processing problem: from which subset of
nodes in the graph to collect samples so that an assumed ban-
dlimited signal can be reconstructed with high fidelity [5–7]?

Assuming an independent and identically distributed (iid)
additive noise model and an unbiased least square (LS) sig-
nal reconstruction [8], minimizing the expected mean square
error (MMSE) leads to the known A-optimality criterion [9].

This work was supported in part by National Science Foundation of
China under grant 61771356, 111 project of China under grant B08038.

Minimizing the A-optimality criterion for graph sampling is
notoriously difficult; evaluating the criterion for a fixed sam-
ple set requires computation of eigenvectors and matrix in-
verse, and selection of an optimal sample set for a fixed sam-
pling budget is NP-hard. To avoid heavy computation, [10]
proposed a generic sampling scheme to minimize MSE greed-
ily, termed minimum Frobenius norm (MFN). [11] used the
much simpler E-optimality criterion instead for graph sam-
pling, which can be interpreted as the worst case of MSE.
[12–14] proposed a lightweight sampling strategy based on
spectral proxies to choose stable samples. In our previous
work [15], we proposed a sampling strategy based on a trun-
cated Neumann series, called matrix inversion approximation
(MIA). However, the number of terms in the truncated sum
must be large to approximate well, limiting its practicality.

In this paper1, we propose a new fast sampling algorithm
via Neumann series expansion. Different from previous ap-
proaches [10–12], we minimize a variant of the A-optimality
criterion directly but without expensive matrix computation.
Yet unlike our previous work [15], there is no explicit compu-
tation of the Neumann series sum in the augmented objective,
and thus no truncation / approximation tradeoff is necessary.

Specifically, we first prove that a DC-shifted A-optimality
criterion can be rewritten as an objective computed using an
inverse of a sub-matrix of an ideal graph low-pass (LP) fil-
ter. The LP filter matrix can be approximated efficiently us-
ing fast Graph Fourier Transform (FGFT) [17]. To minimize
the augmented A-optimality criterion, we propose a greedy
algorithm to choose sample nodes one-by-one based on a ma-
trix inversion lemma, circumventing large matrix inversion
or eigen-decomposition. We show that the computed solu-
tion has an upper bound in performance via super-modularity
analysis [18]. Simulation results show that our proposed strat-
egy achieves better performance than several state-of-the-art
sampling schemes [11, 14, 15] with lower complexity.

The outline of the paper is as follows. In Section 2, we
define essential GSP terms and the A-optimality criterion,
then propose a new objective by augmenting the A-optimality
function. We develop a fast sampling strategy in Section 3

1An extended version of this paper [16] is under submission to IEEE
Transactions on Signal Processing.
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and analyze its performance bound. Experiments results and
conclusion are presented in Section 4 and 5, respectively.

2. A-OPTIMAL GRAPH SIGNAL SAMPLING

2.1. Definitions

Denote by G = (V, E ,W) a graph G containing a set of N
nodes indexed by V = {1, . . . , N}. E specifies the set of
(sparsely) connected node pairs (i, j). W is an N × N ad-
jacency matrix, where the (i, j)-th entry wi,j is the weight of
an edge connecting nodes i and j (wi,j = 0 if nodes i and j
are not connected). The diagonal degree matrix D is defined
by di,i =

∑
j wi,j . As done in [7], we assume connected,

undirected graphs with no self-loops and adopt the symmet-
ric combinatorial Laplacian matrix L = D−W as the vari-
ation operator. Assume that the eigen-decomposition of L is
L = VΣV>, where V = [v1, ...,vN ] contains the orthonor-
mal eigenvectors as columns corresponding to non-decreasing
eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN . The graph
Fourier transform (GFT) of a graph signal x ∈ RN is then de-
fined as x̃ = V>x, and the inverse GFT is x = Vx̃. As dis-
cussed, a K-bandlimited graph signal can be fully expressed
by x = VK x̃K , where VK means the first K columns of V,
and x̃K denotes the first K elements of x̃ 2.

In the sequel, the complement set of sampling set S is
denoted by Sc and its cardinality is written as |S|. AS1S2 is
the sub-matrix of a matrix A with rows and columns indexed
by S1 and S2, respectively. ASS is simplified to AS . I is the
identity matrix whose dimension depends on the context.

2.2. Problem Formulation

In order to select M elements from x to produce xS = Cx
with |S| = M , we define the sampling matrix C = ISV . A
sampled K-bandlimited graph signal can now be written as
xS = CVK x̃K . Sampling operators satisfying rank(CVK) =
K are called qualified sampling operators in [11], on which
any noiseless K-bandlimited graph signal x can be per-
fectly recovered from xS via LS reconsruction, i.e., x̂LS =

VK(CVK)
†
xS , where U† denotes the left pseudo-inverse

of matrix U [14].
If the samples are corrupted by noise, then the LS recon-

struction produces a minimum variance unbiased (MVU) es-
timator x̂LS = VK(CVK)

†
yS = VK(CVK)

†
(xS + n)

[19]. Assuming that noise n is iid with zero mean and unit
variance, the covariance matrix of the reconstruction error
is Rx̂LS = VK

[
(CVK)>CVK

]−1
V>K . By the theory of

optimal experiments design [20], finding sampling matrix C
to minimize the trace of the covariance matrix leads to the

2Authors in [18] defined the K-spectrally sparse graph signal by
x = VKx̃K which is a generalization of our formulation since K ∈ V is
not restricted to be the first K elements. We use the more conventional defi-
nition here, but our algorithm extends naturally to the generalized case.

known A-optimality criterion:

C∗ = arg min
C∈FM×N

tr
(

[(CVK)
>

CVK ]−1
)
. (1)

where FM×N is the search space of all candidates C with
structure ISV . It is NP-hard to find a feasible C∗ that mini-
mizes (1). Further, for each candidate solution C, evaluating
(1) requires the computation of the first K eigenvectors VK

and matrix inversion, both of which are expensive.

2.3. Augmented A-optimality Criterion

We first propose to augment the A-optimality criterion by
adding a scaled identity matrix to (1):

C∗ = arg min
C∈FM×N

tr
(

[(CVK)
>

CVK + µI]−1
)

(2)

µ is a small shift parameter with 0 < µ < 1, whose selection
will be discussed later.

Proposition 1 Denote by T = VKV>K an ideal graph LP fil-
ter with cutoff frequency K. The augmented A-optimal graph
sampling problem (2) is equivalent to

S∗ = arg min
S:|S|=M

tr (TS + µI)
−1
, (3)

given that CVK is full column rank.

The proof, based on the Neumann series theorem [22],
is provided in the extended version [16]. We note that
rank(CVK) = K was shown by experiments to be highly
probable via random sample selection when M ≥ K [23].
We assume rank(CVK) = K hold in the sequel.

2.4. Ideal Graph Low-pass Filter Approximation

One common approximation to T is a Chebyshev matrix
polynomial of L, i.e., TPoly =

∑n
i=1

(∑q
j=0 βjλ

j
i

)
viv
>
i =∑q

j=0 βjL
j . Another approximation is to apply the Jacobi

eigenvalue algorithm: approximately diagonalize L with an
estimated eigenvector matrix Ṽ = S1...SJ , where Si is a
Givens rotation matrix [17]. The goal is to solve the follow-
ing optimization problem:

minimize
Λ̂ΛΛ,S1,...,SJ

‖L− S1...SJΛ̂ΛΛS>J ...S
>
1 ‖2F (4)

where Λ̂ΛΛ is constrained to be diagonal. Given the computed
Ṽ, where L ≈ ṼΛ̂ΛΛṼ>, the ideal LP filter operator T in (3)
can be approximated as TFGFT = ṼKṼ>K

3.
We adopt TFGFT to approximate T for two reasons:

3We prove in [16] that the eigenvalues of TFGFT are in {0, 1} and that of
TFGFT

S are in [0,1].
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Algorithm 1 GFS graph signal sampling algorithm
Input: Graph operator L, bandwidth K, budget M and pa-
rameter µ. S = {∅}.

1: Compute Ṽ = S1...SJ of L via (4).
2: Compute TFGFT = ṼKṼ>K and G = TFGFT + µI.
3: Select the first node by u = arg max

i∈V
Gii, update

S ← S ∪ {u} and G−1
S = G−1

uu

4: While |S| < M
5: ∀i ∈ Sc, compute

gi = GS,{i} and a = Gii − g>i G−1
S gi

G−1
S∪{i} =

[
G−1
S + a−1G−1

S gig
>
i G−1

S − a−1G−1
S gi

− a−1g>i G−1
S a−1

]
6: Select u = arg min

i∈Sc

tr
[
G−1
S∪{i}

]
7: Update G−1

S = G−1
S∪{u} and S ← S ∪ {u}

8: end While
9: Return S

1. [17] demonstrated that
‖T−TFGFT‖

F

‖T‖F
<
‖T−TPoly‖

F

‖T‖F
for

the same complexity when approximating ideal graph
LP filters, such as T in our work.

2. Proposition 1 holds for TFGFT, detailed in [16]. In con-
trast, TPoly does not have such property.

We now write our final augmented sampling objective as
follows:

S∗ = arg min
S:|S|=M

tr
(
TFGFT
S + µI

)−1

(5)

which requires just an approximated LP filter operator, with-
out full eigen-decomposition of L. For simplicity of presen-
tation, we write G = TFGFT + µI in the sequel.

2.5. Selection of Shift Parameter µ

To well approximate the original criterion (1), shift µ should
be small. However, a small µ would cause the matrix inverse
in (5) to be numerically unstable. To ensure numerical sta-
bility, we can design µ to upper-bound the condition number
κ(G) of G, where κ(G) = λmax(G)/λmin(G). Because the
eigenvalues of TFGFT

S are in [0,1], µ ≤ λ (GS) ≤ 1 + µ.
Therefore, we can bound κ(GS) as follows 4:

κ(GS) =
λmax(GS)

λmin(GS)
≤ 1 + µ

µ
≤ κ0 (6)

where κ0 is a user-defined upper bound of the condition num-
ber. Because µ should be chosen as small as possible, the
optimal solution is µ∗ = 1

κ0−1 .

4Designing µ via explicit eigenvalues is impractical, since those values
are related to µ. We here bound a relaxed κ(G) to find a reasonable µ.
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Fig. 1. Numerical complexity comparison with M = 0.05N .

3. FAST SAMPLING WITH PERFORMANCE
GUARANTEE

Greedy algorithms have been commonly used to select one
sample node at a time given a sampling budget [5, 11, 14].
However, if (5) is used as a criterion for greedy node selec-
tion, then the algorithm must perform matrix inversion oper-
ation, i.e., G−1

S , for each candidate additional node. To cir-
cumvent this computation burden, we propose the following
accelerated greedy algorithm.

3.1. Accelerated Greedy Sampling
We observe that matrix G is symmetric, and under appropri-
ate permutation, its sub-matrix GS∪{i} can be expressed as

GS∪{i} =

[
GS GS,{i}
G{i},S Gii

]
,

[
GS gi
g>i Gii

]
(7)

where gi denotes the partial vector of i-th column of G in-
dexed by S.

Using the block matrix inversion formula 5, we can com-
pute the inverse of GS∪{i} as

G−1
S∪{i} =

[
G−1
S + a−1G−1

S gig
>
i G−1

S − a−1G−1
S gi

− a−1g>i G−1
S a−1

]
(8)

where a = Gii−g>i G−1
S gi is a scalar. We write the proposed

sampling method in pseudo-code in Algorithm 1 and call it
graph filter submatrix (GFS)-based sampling algorithm.

3.1.1. Complexity Analysis

G−1
S∪{i} can be computed as simple matrix-vector product,

and thus for each greedy step, its complexity is O(M2). In
contrast, the complexity of each greedy step for MFN and
the E-optimal [14] are both O(M3), while for MIA [15] it
is O(LM2.373). The complexity of computing S1, ...,SJ is
O(NJ logN), where J = O(N logN) [17]. TFGFT is com-
puted as TFGFT = S1...SJRS>J ...S

>
1 , where R is a diagonal

5https://en.wikipedia.org/wiki/Block matrix

5458



matrix with ones on the first K diagonal elements and zeros
for others. Since every Givens matrix Si is sparse, the com-
plexity of iteratively computing TFGFT is O(NJ). Thus, to
obtain the prior information, like T in our paper or VK in E-
optimal method, our algorithm has complexityO(N2log2N).
In Fig. 1, we illustrate the complexity comparison in terms of
graph size, demonstrating that our proposal is more efficient.

3.2. Super-modularity Analysis

We define f(S) = tr
(
TFGFT
S + µI

)−1
and g(S) = tr[(CṼK)>

CṼK+µI]−1. It is easy to derive that the solution of greedily
optimizing f(S) is exactly the same as that of greedily opti-
mizing g(S) because Proposition 1 still holds for orthonormal
matrix Ṽ. Since g(S) approximates the real MSE value, it is
worthwhile to compare its value with the optimal one, thus
we investigate its super-modularity property.

Lemma 1 The set function g(S) = tr[(CṼK)>CṼK +
µI]−1 is (i) monotone decreasing and (ii) α-supermodular
with

α ≥ µ3(µ+ 2)

(µ+ 1)4
(9)

The proof is provided in the extended paper [16].
Let S∗ be the optimal solution that minimizes g(S) when

|S| = M , and S be the set obtained by applying the GFS
algorithm. We obtain a result using Lemma 1:

g(S)− g(S∗)
g({})− g(S∗)

≤ e−α (10)

which is easily derived from Theorem 2 in [18]. This equation
means that the performance of the greedy solution S is upper-
bounded by g(S∗).

4. EXPERIMENTAL RESULTS
All experiments were conducted in MATLAB R2017b, run-
ning on a PC with Intel Core I3 3.7 GHz CPU and 16GB
RAM. The simulated artificial graphs 6 are described as fol-
lows:

(G1) Community graphs with 1000 nodes, where the
number of communities is 31;

(G2) Sensor graphs with 1000 nodes.
Artificial graph signals are assumed to be bandlimited

with bandwidth K = 50. The non-zero GFT coefficients are
randomly generated from the distribution N

(
1, 0.52

)
, and

the coefficients after K = 50 are zeros. The generated graph
signals are corrupted by additional white Guassian noise
(AWGN), where the signal-to-noise ratio (SNR) is 0 dB.

The truncation degree in the MIA algorithm [15] is set to
be L = 10. One GSP toolbox [25] is adopted to approximate
the ideal LP filter in the MIA method, where p = 25 and
α = 30 [13]. For the spectral proxies algorithm [14], the ap-
proximation order is k = 10. For the proposed GFS sampling,

6All of these graphs are generated from a GSP open source [25].
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Fig. 2. Reconstruction MSE of different sampling algorithms.

Table 1. Reconstruction MSE of Different µ at 0dB

Graph µ
Sample size

100 110 120 130 140

G1 10−5 16.10 14.55 13.43 12.44 11.63
1/99 16.07 14.59 13.43 12.46 11.64

G2 10−5 20.77 18.68 17.09 15.77 14.63
1/99 20.77 18.73 17.12 15.78 14.64

the shift parameter µ is designed to be 1/(κ0 − 1), where we
set κ0 = 100. The number of Givens rotations matrices is
J = 6N logN in this simulation.

Fig. 2 shows the reconstruction MSE of different sam-
pling schemes when the reconstruction method is LS. The
performance of random sampling for the same sample size
is too poor and thus is deleted in this figure. Fig. 2 demon-
strates that our proposed GFS sampling algorithm achieves
better MSE performance than three other sampling schemes,
and closely approximates MFN for both community and sen-
sor graphs at 0 dB. As discussed, MFN greedily optimizes
the original MSE criterion, whose complexity is substantial
for large graphs. In contrast, our proposed strategy can have
comparable performance with much lower complexity.

For our sampling criterion, a customized µ based on con-
dition number will introduce some approximation error. Re-
sults in Table 1 show that the performance of µ = 1/(100−1)
is almost the same as that of an extremely small µ. This in-
dicates that the designed µ for numerical stability does not
introduce a noticeable performance gap compared to the aug-
mented criterion with a negligible shift.

5. CONCLUSION

Based on Neumann series conversion, we propose the GFS
sampling strategy to select samples greedily without full
eigen-decomposition and large matrix inversion. Compared
with several existing graph sampling methods, GFS achieves
superior or comparable performance with lower complexity,
demonstrated in simulations using large artificial graphs.
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