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ABSTRACT

We study the problem of jointly estimating several network pro-
cesses that are driven by the same input, recasting it as one of blind
identification of a bank of graph filters. More precisely, we consider
the observation of several graph signals – i.e., signals defined on the
nodes of a graph – and we model each of these signals as the out-
put of a different network process (represented by a graph filter) de-
fined on a common known graph and driven by a common unknown
input. Our goal is to recover the specifications of every network
process by only observing the outputs. Since every process shares
the same input, the estimation problems are coupled, and a joint in-
ference method is proposed. We study two different scenarios, one
where the orders of the filters are known, and one where they are
not. For the former case we propose a least-squares approach and
provide conditions for recovery. For the latter case, we put forth a
sparse recovery algorithm with theoretical guarantees. Finally, we
illustrate the methods here proposed via numerical experiments.

Index Terms— blind identification, graph filter, network pro-
cess, sparse recovery

1. INTRODUCTION

Many biological [1], technological [2], and social systems [3] can
be better understood when interpreted as networks, comprising a
large number of individual components that interact with each other
to generate a global behavior. Associated with these networks, an
increasing amount of network data is being collected, primarily
comprised of data attached to the nodes or agents that form the
network. The modeling and analysis of this type of data have been
the subject of study of graph signal processing (GSP). Under the
assumption that the signal properties are related to the topology of
the underlying network, the goal of GSP is to develop algorithms
that fruitfully leverage this relational structure [4–6]. Examples
of relevant problems that have been recently addressed using GSP
tools include graph signal sampling [7–11], graph-based Wavelet
and Fourier transforms [12,13], and topology identification [14–17],
to name a few.

In the past years, substantial effort has been devoted to the de-
velopment and understanding of graph filters [18–21]. This thrust
is driven by the fact that graph filters are versatile models for net-
work processes, allowing us to apply signal processing tools to the
study of network science problems. Noteworthy approaches include
the optimal design of graph filters [19,20], the consideration of non-
linear filters [22], and the blind identification of filters [23–25]. Of
special interest to us is this last direction, where one tries to estimate
the specification of a network process (i.e., the coefficients of the

This work was supported in part by the Spanish grants MINECO Klini-
lycs TEC2016-75361-R and Instituto de Salud Carlos III DTS17/00158.

associated graph filter) by only observing one output. Nonetheless,
in many scenarios we have access to the output of multiple related
network processes excited by the same input. For example, different
patterns of brain activity when an individual is presented with a com-
mon input such as the same visual stimulation. Alternatively, we can
think of a single dynamic network process that is sensed at different
points in time as corresponding to multiple network processes of dif-
ferent length driven by the same input. For both cases, the common
input calls for a joint estimation formulation, which is the focus of
the current paper. In classical discrete-time signal processing the re-
lated problem of multi-channel system identification is well studied
and solutions have been provided based on different assumptions.
In particular, some approaches assume statistical knowledge of the
input and put forth second-order and higher-order methods for the
recovery [26, 27] whereas others treat the inputs as unknown deter-
ministic signals [28, 29]. In the current work we draw inspiration
from this latter direction, and tackle the more general problem of
graph filter multi-channel identification.

Contributions and paper outline. The paper contains two main
contributions. First, for the scenario where the orders of the un-
known filters are given, we present a least-squares approach along
with necessary and sufficient conditions for recovery. Though re-
lated to the classical approach for time-invariant filters, the consider-
ation of a general graph raises interesting technical issues. Second,
for the scenario where the filter orders are not given, we propose
a sparse recovery formulation and provide theoretical guarantees of
performance. The remainder of this paper is organized as follows. In
Section 2 we provide basic notions of GSP and classical filter identi-
fication needed to introduce our problem. In Section 3 we formulate
the problem to be solved, and propose methods for its solution along
with theoretical analysis of these methods. Numerical experiments
illustrating our developments are presented in Section 4 and closing
remarks are included in Section 5.

2. PRELIMINARIES

We first introduce core concepts in GSP that allow us to formulate
our problem of joint estimation of network processes, followed by
a quick introduction to the classical problem of blind time-invariant
multi-channel identification.

Fundamentals of graph signal processing. Consider the directed
graph G = (N , E) formed by the set N of N nodes and the set of
edges E , such that the pair (i, j) belongs to E if there exists an edge
from node i to node j. Associated with a given G, a graph signal
can be represented as a vector x = [x1, . . . , xN ]> ∈ RN , where the
ith component, xi, represents the signal value at node i. The net-
work structure is captured by the graph shift operator (GSO) S [4],
a sparse matrix that can take non-zero values if (i, j) ∈ E or i = j,
that is, [S]ji = 0 for (i, j) 6∈ E and i 6= j. Notice that S reflects the
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local connectivity of G. Specifically, if y = Sx, node i can compute
yi as a linear combination of the signal values xj where j belongs to
the incoming neighborhood of i, i.e. j ∈ Ni = {j | (j, i) ∈ E}. The
adjacency matrix [4] and the graph Laplacian [5] are usual choices
for the GSO. Assuming that S is diagonalizable, the shift can be de-
composed as S = VΛV−1, where V collects the eigenvectors of
S as columns and the diagonal matrix Λ = diag(λ) collects the
eigenvalues λ = [λ1, . . . , λN ]>. Linear graph filters are defined as
graph-signal operators that can be expressed as polynomials in S [4]

H =

L−1∑
l=0

hlS
l. (1)

The filtering operation is thus given by y = Hx, where y is the
filtered signal, x the input, and h = [h0, . . . , hL−1]> the filter co-
efficients. Moreover, we say that L is the order of the filter (i.e., the
size of h), and L − 1 the degree of the filter (i.e., the degree of the
polynomial H).

Graph signals and filters can also be represented in the frequency
(or Fourier) domain. Defining U = V−1 and Ψ as a Vandermonde
matrix of dimension N × L whose entry Ψij = λj−1

i , then the
frequency representations of a signal x and a filter h can be obtained
as x̃ = Ux and h̃ = Ψh. Correspondingly, graph filters can be
rewritten as H = U−1(

∑L−1
l=0 hlΛ

l)U = U−1diag(Ψh)U, from
where it follows that the frequency representation of the output is
given by

ỹ = Uy = UHx = diag(Ψh)Ux = diag(h̃)x̃ = h̃ ◦ x̃, (2)

where ◦ denotes the elementwise (Hadamard) product. Notice that
(2) is the graph equivalence of the classical convolution theorem.

Classical blind multi-channel identification. Following the prob-
lem formulation in [28], we have that x(·) represents a discrete-time
input signal with corresponding output yi(·) given by

yi(k) =

L∑
j=0

hi(j)x(k − j), i = 1, . . . ,M. (3)

More specifically, yi(·) corresponds to the output of a FIR filter with
channel impulse response hi(·) when excited by the common input
x(·). The blind identification problem can then be stated as follows:
Given the channel outputs {yi(k), i = 1, . . . ,M ; k = L, . . . , N},
determine the channel specifications {hi(·)}Mi=1. Notice that (3) can
be compactly written as yi(k) = hi(k) ∗ x(k), where ∗ denotes a
convolution operation, from where it follows that

hj(k) ∗ yi(k) = hj(k) ∗ hi(k) ∗ x(k) = hi(k) ∗ yj(k). (4)

In order to leverage the underlying algebraic structure of this prob-
lem, we may define the Hankel matrices {Bi}Mi=1 of dimension
(N − 2L + 1) × (L + 1), where the (m,n) element of Bi is
yi(m + n + L − 2). We recall the Data Selection Transform
(DST) D [30] applied to {Bi}Mi=1, which is recursively given by
D2(B(·)) = [B2,−B1] and

Dm(B(·)) =


Dm−1(B(·)) 0

Bm

. . .
Bm

−B1

...
−Bm−1

 . (5)

Consequently, by defining B = DM (B(·)), all the possible cross
relations of the form in (4) can be condensed in

Bh = 0, (6)

where hi = [hi(L), · · · , hi(0)]> and h = [h>1 , · · · ,h>M ]>.

3. JOINT ESTIMATION OF MULTIPLE NETWORK
PROCESSES

Leveraging the notions introduced in Section 2, we can formalize
the problem to be solved. Based on a GSO S, there exist M fil-
ters {H(i)}Mi=1 defined as in (1) with associated filter coefficients
{h(i)}Mi=1. The outputs {y(i)}Mi=1 are generated by these filters
when excited by the same unknown input x, i.e., y(i) = H(i)x.

Problem 1 Given S and the outputs {y(i)}Mi=1, recover the filter
coefficients {h(i)}Mi=1 with no knowledge of the common input x.

First notice that the recovery sought here is up to a scalar ambi-
guity, since we can always multiply all the filter coefficients h(i) by
a scalar α and multiply x by 1/α without modifying the observed
outputs. To see why this problem bears practical relevance, note
that graph filters can be used to represent linear diffusion dynamics
that depend on the network topology [19, 20, 23]. Potential appli-
cations range from social networks where a rumor is spread across
the network via local opinion exchanges, to brain networks where an
epileptic seizure emanating from few regions is later diffused across
the entire brain. Indeed, the different outputs y(i) might correspond
to different processes run on the same network, or a single dynamic
process that is sensed at different points in time. In this way, the
order of the filters – i.e., the size of the vectors {h(i)}Mi=1 – indicates
the length of the network processes considered. The approach to-
wards solving Problem 1 is fundamentally different depending on
whether this length information is given or not. Accordingly, in
Section 3.1 we tackle the setting where the orders of the filters are
known, whereas in Section 3.2 we consider the more challenging
setting where this information is not given.

3.1. Known filter orders

The knowledge of the filter orders Li allows us to define a series
of Vandermonde matrices {Ψi}Mi=1 of dimension N × Li whose
(m,n) element is λn−1

m and a block diagonal matrix Ψ that contains
M blocks respectively given by {Ψi}Mi=1. Moreover, we define the
diagonal matrices Ỹi = diag(ỹi), collecting the frequency repre-
sentations of the outputs. Leveraging the classical DST transform
[cf. (5)], we may define Ỹ = DM (Ỹ(·)), from where the following
characterization of the true filter coefficients follows.

Proposition 1 Defining h = [h(1)>,h(2)>, . . . ,h(M)>]> ob-
tained by vertically concatenating the coefficients of theM unknown
filters, the following expression holds

ỸΨh = 0. (7)

Proof: From (2) it follows that ỹi = h̃i ◦ x̃ for all i. Thus, in a spirit
similar to (4) we may write

h̃j ◦ ỹi = h̃j ◦ h̃i ◦ x̃ = h̃i ◦ h̃j ◦ x̃ = h̃i ◦ ỹj , (8)

which implies that h̃j ◦ ỹi− h̃i ◦ ỹj = 0. Leveraging the definition
of the DST, we may write the difference between every pair i, j as
Ỹh̃ = 0. By noting that h̃ = Ψh [cf. (2)], the result follows.

Proposition 1 reveals that whenever ỸΨ is well behaved, we
can recover the true filter coefficients h. More precisely, if we
have that rank(ỸΨ) =

∑M
i=1 Li − 1 we may uniquely deter-

mine h up to a multiplicative constant (cf. discussion following
Problem 1). In order to get further insights about when this rank
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condition holds, it is instrumental to define the scalar polynomi-
als p(i)(z) =

∑Li−1
l=0 h

(i)
l zl, whose coefficients are given by

the true filter coefficients. Moreover, let us define the index set
Ω ⊆ {1, 2, . . . , N} as being the largest possible set satisfying that
x̃n 6= 0 and every λn is distinct for all n ∈ Ω. Based on these
notions, we state sufficient conditions for identifiability of the true
filter coefficients by solving (7).

Proposition 2 With Ω being the index set associated with x and S,
(7) admits a unique solution (up to a scalar multiple) if:
i) |Ω| ≥ Lmax +Lmin− 1, where Lmax and Lmin are the maximum
and minimum values in {Li}Mi=1, and
ii) The polynomials {p(i)(z)}Mi=1 do not share common roots.

Proof: Let us denote by h′ a generic solution of (7), the goal of
this proof is to show that under conditions i) and ii) it must be that
h = αh′. Consider the polynomials p′(i)(z) =

∑Li−1
l=0 h

′(i)
l zl as-

sociated with the generic solution h′. From (8) it follows that

p(i)(λn)p′(j)(λn)x̃n = p(j)(λn)p′(i)(λn)x̃n, (9)

for all i, j = 1, . . . ,M and for all n = 1, . . . , N . Fix an arbitrary j
and choose the index i as one satisfying Li = Lmin. Moreover, con-
sider the indices n ∈ Ω. Since x̃n 6= 0 and every λn is distinct, it fol-
lows that the polynomial pij(z) = p(i)(z)p′(j)(z)− p(j)(z)p′(i)(z)
must have at least |Ω| roots given by the eigenvalues λn for n ∈ Ω.
However, the degree of pij(z) is at mostLmax+Lmin−2, thus, from
condition i) we have that pij(z) = 0 for all z ∈ C. Equivalently, we
have that

p(i)(z)p′(j)(z) = p(j)(z)p′(i)(z), (10)

for all z ∈ C. It follows that every root z0 of p(i)(z) – i.e., a zero
in the left hand side of (10) – must be a root of p′(i)(z), since by
condition ii) there exists a j∗ such that p(j∗)(z0) 6= 0, and we know
that p(j∗)(z0)p′(i)(z0) = 0. For the case where p(i)(z) has distinct
roots (the case of repeated roots can also be shown, but we omit it
for brevity), this immediately implies that p(i)(z) = αp′(i)(z) for
some scalar α. Finally, replacing this equality in (10) we get that
p(j)(z) = αp′(j)(z) for all arbitrary j, from where h = αh′.

Proposition 2 states sufficient conditions under which we can
solve Problem 1 by simply choosing the unique solution to (7). No-
tice that the first condition is essentially encoding a notion of spec-
tral richness of the observed process. Indeed, |Ω| is equal to the
number of distinct frequencies in our underlying graph (i.e., distinct
eigenvalues λn) that are excited by the unknown input (x̃n 6= 0).
Proposition 2 successfully parallels the classical result in [28, Th. 1].
Notice, however, that in [28] every filter was assumed to be of the
same length, and the measure of richness used was essentially dif-
ferent since, in the absence of a graph, the richness was exclusively
determined by the input. We also present necessary conditions for
identifiability.

Proposition 3 If (7) admits a unique solution (up to a scalar multi-
ple) it must be that:
i) |Ω| ≥ Lmax, and
ii) The polynomials {p(i)(z)}Mi=1 do not share common roots.

Proof: (sketch for brevity) To see that i) is indeed a necessary
condition it suffices to show that it is a necessary condition for
the simpler problem of recovering h when the common input x is
known. For condition ii), consider the case where there is a common
root z0 shared by all polynomials {p(i)(z)}Mi=1 so that we can write
p(i)(z) = q(i)(z)(z − z0) for all i. In this case, it can be shown that

the filter coefficients associated with the polynomials q(i)(z)(z−z′0)
for any choice of z′0 also solve (7).

Proposition 3 states that whenever the number of distinct fre-
quencies excited by our input is smaller than the number of free pa-
rameters in the longest network process (highest-degree graph filter),
then recovery is not possible. Similarly, whenever the responses of
the filters are not different enough to distinguish them correctly, re-
covery cannot be achieved. Notice that Propositions 2 and 3 provide
separate insights on either sufficient or necessary conditions for re-
covery. The derivation of necessary and sufficient conditions is a
matter of current development. Lastly, real-world observations are
usually noisy and modeled as y(i) = H(i)x + ε(i), where ε(i) rep-
resents the noise of the ith observation. In practice (including the
experiments in Section 4), our estimate ĥ for the filter coefficients is
simply obtained as ĥ := argminh|‖h‖2=1 ‖ỸΨh‖2.

3.2. Unknown filter orders

The approach in Section 3.1 heavily relies on the knowledge of Li in
order to build matrix Ψ. Whenever the orders Li are unknown, our
proposed approach is to overshoot them, and then incorporate a com-
plexity regularizer that promotes shorter filters whenever they can
appropriately explain the observations. To be more precise, we de-
note the assumed filter orders by Qi, where we ensure that Qi ≥ Li

for all i by selecting large enough orders Qi as guided by avail-
able domain knowledge. We then define a series of Vandermonde
matrices {Θi}Mi=1 of dimension N × Qi whose (m,n) element is
λn−1
m and a block diagonal matrix Θ whose M diagonal blocks are

given by {Θi}Mi=1. Notice that Θ = Ψ whenever Qi = Li for all
i. Based on the true filter coefficients h(i), let us define the zero-
padded vectors h̄(i) = [h(i)>,0>(Qi−Li)×1]>. Consequently, if we
define h̄ = [h̄(1)>, . . . , h̄(M)>]>, it follows from Proposition 1 that

ỸΘh̄ = 0. (11)

The results provided in Section 3.1 are still valid for (11). How-
ever, given that we have increased the number of free parameters
by overshooting the filter orders, it becomes harder for the sufficient
conditions in Proposition 2 to hold. This is an indication that the
least-squares approach advocated in Section 3.1 – and in [28] for
the classical setting – might not be appropriate for the scenario with
unknown filter orders. By contrast, we propose to estimate h̄ by
solving the following `1-analysis problem [31]

ˆ̄h = argmin
h̄

‖∆h̄‖1 s.t. ỸΘh̄ = 0, h̄1 = 1, (12)

where the diagonal matrix ∆ contains positive predefined weights.
More precisely, whenever ∆ = I, (12) seeks among all non-trivial
solutions to ỸΘh̄ = 0 for the sparsest one where the `1 norm has
been used as a convex surrogate of the non-convex `0 pseudo-norm.
Moreover, given that the true h̄ is formed by concatenating multiple
zero-padded vectors, when solving (12) we seek to strongly promote
zeros for the filter coefficients associated with larger degrees. This
can be achieved by setting increasing weights in ∆. Indeed, the re-
sults in Section 4 will show that there is a clear advantage associated
with the consideration of weight matrices ∆ different from the iden-
tity. Lastly, the second constraint in (12) is simply enforced to avoid
the trivial solution ˆ̄h = 0. Given that recovery is always consid-
ered up to a scalar multiple, this constraint is only making the mild
assumption that h̄(1)

1 6= 0 for the true filters.
A fundamental question is whether the solution to (12) indeed

recovers the true filter coefficients h̄. In order to answer this, let

5453



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2,000

4,000

6,000

ψ

C
ou

nt

Exponential weighting

Success
Failure

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1,000

ψ

C
ou

nt

No weighting

Success
Failure

(a)

10−4 10−3 10−2 10−1 100

10−3

10−2

10−1

100

Noise standard deviation

R
M

SE

M=3
M=4
M=5
L=5
L=6
L=7

(b)

10−4 10−3 10−2 10−1 100

10−2

10−1

100

Noise standard deviation

R
M

SE
(m

ed
ia

n)

Q=3 Exp.
Q=4 Exp.
Q=5 Exp.
Q=3 I
Q=4 I
Q=5 I

(c)
Fig. 1: Experimental results based on 20, 000 Monte Carlo simulations. (a) Validation of Proposition 4 and comparison of weight matrices
∆. (b) Estimation with known orders in the presence of noise, for varying orders L and number of network processes M . (c) Estimation with
unknown orders in the presence of noise, for varying assumed orders Q and weight matrices ∆.

us introduce the following notation. We denote by Φ the matrix
obtained by dropping the first column of ỸΘ. We denote by h̄(−1)

the vector obtained by dropping the first entry of h̄ and by ∆(−1)

the matrix obtained by dropping the first column and the first row of
∆. Also, we denote by I = supp(h̄(−1)) the indices of the non-
zero true coefficients (after dropping h̄1), and by Ic its complement.
Finally, given any matrix A and a set of indices S, the matrix AS is
obtained by selecting the columns from A indicated by S. With this
notation in place, the following result holds.1

Proposition 4 The solution to (12) coincides with the true filter co-
efficients h̄ if:
i) rank(ΦI) = |I|, and
ii) There exists a constant δ > 0 such that

ψ = ‖I>Ic(δ−2∆−1
(−1)Φ

>Φ∆−1
(−1) + IIcI

>
Ic)−1II‖∞ < 1.

Proposition 4 provides sufficient conditions for the recovery of
the coefficients h̄. The first condition is based on the support of
the true filter coefficients and is needed to ensure the uniqueness of
the solution to (12), a prerequisite for ˆ̄h to coincide with h̄. The
second condition takes into account both the weight matrices ∆ and
the size of the complement of the support of the true filters, i.e., how
drastically Qi overshoots Li. Finally, in practical implementations
where noise is present, we replace the first equality constraint in (12)
by ‖ỸΘh̄‖2 ≤ ε. Guarantees akin to those in Proposition 4 can be
derived for this robust formulation but lie outside our present scope.

4. NUMERICAL EXPERIMENTS

All simulations consist of 20, 000 Monte Carlo runs. Inputs, filter
coefficients, and noise realizations are drawn from standard Gaus-
sian distributions, with filter coefficients normalized to have unit `2
norm. When the filter orders are known, the estimates ĥ are obtained
from the singular value decomposition of ỸΨ whereas a robust ver-
sion of (12) is used when the filter orders are unknown (cf. last
paragraphs of Sections 3.1 and 3.2, respectively).

We begin by examining the impact of parameter ψ in Propo-
sition 4 on the estimation success. For this experiment we con-
sider Erdős-Rényi (ER) graphs with N = 50 and edge probability
p = 0.1, L = 3 coefficients per filter, Q = 5, and M = 3 network
processes. In Fig. 1a we present the histograms of successful and
failed recoveries as a function of ψ for two choices of ∆, namely,

1Proof can be found at http://ss187.blogs.rice.edu/
files/2018/10/ICASSP19_with_app-1oqs58s.pdf

no weighting (∆ = I) and weights that increase exponentially with
order of each coefficient. We choose δ from {0.1, 1, 10} and keep
the one that achieves the lowest ψ (cf. Proposition 4). We first ob-
serve that, as expected, every realization for which ψ < 1 resulted in
a successful recovery. In addition, the exponential weighting matrix
improves the performance with respect to the absence of weighting.
This improvement can be explained by the observed concentration
of the empirical distribution of ψ around values smaller than 1.

We now analyze the effect that varying L and M has in recover-
ing h when the orders of the filters are known. We first fix M = 3
and consider graphs drawn from a stochastic block model (N = 54,
3 blocks) with probabilities of intra- and inter-community edge ap-
pearance given by p = 0.3 and q = 0.05, respectively [32]. The
dashed plots in Fig. 1b portray that the recovery becomes more chal-
lenging for larger values of L, where the RMSE of the recovered
coefficients ĥ is computed as ‖ĥ − h‖2/‖h‖2. This is expected,
since a larger L implies more unknowns to be estimated for the same
number of observations. Next, we fix L = 3 and vary the number
of filters M for ER graphs (N = 50, p = 0.1). The solid plots in
Fig. 1b indicate that recovery is benefited by larger M . Intuitively,
since we have a common input, the more filters we observe, the eas-
ier it is to perform joint estimation.

In our last experiment, we assume that the filter orders L = 3
are unknown and we vary Q ∈ {3, 4, 5} for a fixed value of M = 3.
Moreover, we analyze the performance of the same two weight ma-
trices ∆ considered in Fig. 1a on graphs randomly generated from
a Barabási-Albert model (N = 50, ER seed with n = 8 and p =
0.5) [32]. In general, Fig. 1c shows that the accuracy decays as Q
becomes larger, owing to the additional degrees of freedom. Finally,
it becomes apparent that the exponential weighting is more robust to
the level of overshooting when Q > L.

5. CONCLUSIONS

We have formulated the problem of joint estimation of network pro-
cesses as a blind multi-channel identification of graph filters. This al-
lowed us to leverage classical signal processing approaches towards
the characterization of network processes. We showed that the prob-
lem is inherently different when the filter orders are known and when
they are not. For the former case we put forth a least-squares ap-
proach and specified the conditions for recovery. For the latter case,
we proposed a sparse recovery method with theoretical guarantees of
performance. Future research avenues include estimation methods
for setups where the process specification is partially shared across
graph filters, and the identification of non-linear network processes.
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