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ABSTRACT

Unsupervised dimension selection is an important problem that
seeks to reduce dimensionality of data, while preserving the
most useful characteristics. While dimensionality reduction is
commonly utilized to construct low-dimensional embeddings,
they produce feature spaces that are hard to interpret. Further,
in applications such as sensor design, one needs to perform
reduction directly in the input domain, instead of construct-
ing transformed spaces. Consequently, dimension selection
(DS) aims to solve the combinatorial problem of identifying
the top-k dimensions, which is required for effective experi-
ment design, reducing data while keeping it interpretable, and
designing better sensing mechanisms. In this paper, we de-
velop a novel approach for DS based on graph signal analysis
to measure feature influence. By analyzing synthetic graph
signals with a blue noise spectrum, we show that we can mea-
sure the importance of each dimension. Using experiments in
supervised learning and image masking, we demonstrate the
superiority of the proposed approach over existing techniques
in capturing crucial characteristics of high dimensional spaces,
using only a small subset of the original features.

Index Terms— dimension selection, graph fourier trans-
form, spectral analysis, image masking

1. INTRODUCTION

In this paper, we consider Dimension Selection (DS), which
is the problem of selecting the most relevant or influential
dimensions from high-dimensional (HD) datasets, such that
both the complexity and the robustness of downstream analysis
can be improved [1, 2, 3]. This is crucial in several small data
scenarios, where model design becomes more challenging as
the dimensionality grows. Though augmenting datasets with
more dimensions can be beneficial, undersampling such HD
parameter spaces can produce models which rely on noisy
correlations. Furthermore, in sensing systems, we often prefer
low-dimensional approximations of the high-dimensional data
to meet communication, computation, and storage constraints,
while retaining the most relevant information [4].

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. LLNL-CONF-767904.

Though feature selection is a well-studied problem in su-
pervisory learning, e.g. lasso [5], extensions to the unsuper-
vised case have gained a lot of interest. Popular examples
include random sampling, principal coordinate analysis [6],
spectral feature identification [7], similarity-preserving fea-
ture selection [8], and the more recent dimension masking
techniques [9]. Broadly, these approaches rank the different
dimensions by their ability to preserve the inherent structure,
measured using a variety of spatial and spectral heuristics. In
this paper, we propose a novel approach based on graph signal
analysis for dimension selection, which is both effective and
scalable for high-dimensional data. First, we construct a graph
for the dataset, where each node corresponds to a sample, and
define a synthetic graph signal characterized by a blue-noise
spectrum. Subsequently, we measure the amount of change in
the low-frequency content of the signal’s spectrum, by perturb-
ing each dimension, based on which we define an importance
score. We hypothesize that a feature (dimension) is important
if the noisy signal becomes more predictable, i.e. with more
energy in the lower frequencies, when that dimension is per-
turbed. As we show in our experiments on supervised learning
and image masking, this importance score outperforms other
existing strategies in selecting relevant dimensions.

2. BACKGROUND - GRAPH SIGNAL ANALYSIS

Formally, an undirected weighted graph is represented by
the triplet G = (V, E ,A), where V denotes the set of nodes
with cardinality |V| = N , E denotes the set of edges, and
A ∈ RN×N is an adjacency matrix that specifies the weights
on the edges, where Ai,j corresponds to the edge weight be-
tween nodes vi and vj . Let Ni = {j|Ai,j 6= 0} define the
neighborhood of node vi, i.e. the set of nodes vj that have
incident edges to it. The normalized graph Laplacian, L, is
then constructed as L = I−D−1/2AD−1/2, where D is the
degree matrix with diagonal entries Dii =

∑
j∈Ni

Ai,j , and I
denotes the identity matrix.

Given a graph G, we can define a graph signal s, a nu-
merical function indexed by the nodes V , as follows: s =
[s1, s2 · · · sN ]T ;∀si ∈ R. For example, an image can be rep-
resented as pixels defined on a 2−D regular lattice graph,
and in this case, the pixel values form the graph signal. Fol-
lowing [10], we define the graph shift operator, akin to the
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(a) Spectral domain definition (b) Reconstructed graph signal
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Fig. 1. (a)-(b) Designing a graph signal with blue noise spectrum., (c)-(d) Proposed importance measure for feature selection.

time-shift operator in classical signal processing. With the
graph shift operation, the signal si indexed by the node vi can
be transformed as a weighted linear combination of the signal
values at the neighboring nodes:

s̃i =

N∑
j=1

Ai,jsj =⇒ s̃ = As. (1)

Here, the adjacency matrix is directly used to define the graph
shift. Alternative choices include the transition matrix D−1A,
or the normalized graph Laplacian L, which is used in this
paper.
Graph Fourier Transform: Performing spectral decomposi-
tion of a signal space S is at the core of the proposed approach.
In general, spectral decomposition of a signal space corre-
sponds to identifying subspaces that are invariant to the choice
of filtering, i.e. the filtered version of a signal from subspace
Sk still lies in that subspace. The set of generalized eigenvec-
tors of the graph Laplacian, L = UΛUT , where U ∈ RN×N ,
is referred to as the graph Fourier basis. Consequently, decom-
position of a signal s ∈ S corresponds to computing its expan-
sion in the graph Fourier basis: s = Uŝ, where the expansion
coefficients can be computed as ŝ = U−1s. This process is
known as the Graph Fourier Transform (GFT), and the collec-
tion of coefficients ŝ is referred to as the spectrum [11]. The
ordered eigenvalues loosely represent frequencies of signal
variation, with λ1 to λN representing the smallest to largest
frequencies. In other words, larger signal variations between
closely connected neighbors correspond to high frequencies,
while smooth variations correspond to low frequencies. In
this context, the graph filtering using a graph shift operator
corresponds to a simple low-pass filter.

3. PROPOSED APPROACH

3.1. Blue Noise Spectrum

In supervised feature selection approaches, predictability and
uncertainty are two commonly used heuristics for ranking fea-
tures. While the former metric measures how well a feature
supports the overall prediction, the latter measures how much
the prediction is bound to change when a feature is perturbed.

In the context of graph signal analysis, a predictable signal is
characterized by the smoothness property with respect to the
neighborhoods. In other words, we expect a graph spectrum
to be dominated by low frequency content when a signal is
predictable in the domain considered. Similarly, a response
function that is highly uncorrelated with the predictor variables
manifests as a spectrum with majority of its energy concen-
trated at higher frequencies. In unsupervised scenarios, we
argue that by choosing an appropriate graph signal, one can
effectively measure feature importances in a similar way.

The core idea of the proposed approach is that using a noise
spectrum with controlled characteristics, we determine which
dimensions maximally alter the spectral characteristics of the
signal when they are perturbed. In particular, we consider the
form of perturbation where a chosen dimension is masked (set
to zero or a constant). For a given graph G, we propose to
utilize the blue noise spectrum for studying feature importance.

Blue noise patterns have been regularly used in computer
graphics for designing sampling distributions. In imaging prob-
lems, blue noise distributions [12, 13] are aimed at replacing
visible aliasing artifacts with incoherent noise, and its proper-
ties are typically defined in the spectral domain. Formally, a
blue noise power spectrum should satisfy the following two
requirements: (a) the spectrum should be close to zero in the
low-frequency region, which indicates the frequencies that can
be represented with no aliasing; (b) the spectrum should be a
constant in mid and high-frequency regions to reduce the risk
of aliasing. The low frequency band with minimal energy is
referred to as the zero region. Hence, we define a blue noise
graph spectrum as:

ŝbk =

{
0 if k ≤ k0,
1 if k > k0.

(2)

Here, k ≤ k0 denotes the range of low-frequency spectral
components that will have zero energy. In our context, we
expect a signal with a blue noise graph spectrum to have no
smoothness with respect to G and have an equally likely chance
of observing all frequencies larger than k0. Using the inverse
GFT, we can reconstruct the signal corresponding to the blue
noise spectrum as sb = Uŝb. Figures 1(a) and 1(b) illustrate
the blue noise spectrum (with k0 = 50) and its corresponding
inverse Fourier transform for an example case.
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0 50 100 150 200 250
Number of Features

0.2

0.4

0.6

0.8

1.0

F1
-S

co
re

PCoA
Proposed

(c) Mfeat-pixel

0 50 100 150 200
Number of Features

0.2

0.4

0.6

0.8

F1
-S

co
re

PCoA
Proposed

(d) Mfeat-factor

0 25 50 75 100 125 150 175
Number of Features

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-S

co
re

PCoA
Proposed

(e) Musk Clean1

0 25 50 75 100 125 150 175
Number of Features

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
-S

co
re

PCoA
Proposed

(f) Primate splice-junction gene sequences

Fig. 2. Impact of feature selection on the classifier performance of datasets from the PMLB benchmark suite. We incrementally
add features, ranked by the importance score, to the feature set and evaluate the validation performance of the resulting classifiers.
We report the performance of Principal Coordinate Analysis (PCoA) for comparison.

3.2. Measuring Feature Importances

In order to measure the importance of different dimensions in
a high-dimensional dataset X with N samples and the feature
set D, we first construct a k−nearest neighbor graph G and
build a signal with blue noise spectrum. Subsequently, we
mask one dimension d ∈ D at a time and rebuild the neighbor-
hood graph Gd with the modified data. By computing the GFT
using the new set of basis functions, Ud, we obtain the modi-
fied spectrum for the blue noise signal. A feature dimension d
is considered to be more important when masking that dimen-
sion introduces significant low-frequency components into the
spectrum. In other words, an otherwise non-smooth signal
becomes more smooth when the domain is altered by masking
one of the relevant feature dimensions. For example, Figure
1(c) shows the modified spectrum (along with the original blue
noise spectrum) when a relevant feature is masked. Whereas,
as seen in Figure 1(d), perturbing an irrelevant feature still
results in nearly zero low-frequency content. In contrast to
existing masking techniques [9], this approach does not se-
quentially augment the set of selected features, but instead
studies each dimension one at a time with respect to the blue
noise spectrum. Consequently, this can be entirely parallelized
and made scalable to even higher dimensional datasets.

Finally, we define an importance score that is used to
rank the dimensions in D. Denoting the original blue noise
spectrum and the spectrum with a masked dimension as ŝb and
ŝbd respectively, we define the importance score as follows:

γd =
∥∥ŝb[1 : k0]

∥∥2
2
−
∥∥ŝbd[1 : k0]

∥∥2
2
. (3)

Here, we measure the difference in total energies at low-
frequencies, in order to quantify the amount of smoothness
in the modified spectrum. The parameter k0 corresponds to
the zero region in the definition of the blue noise spectrum.
Interestingly, from our experiments, we find that the resulting
feature ranking is not very sensitive to the choice of k0, and
hence, we fixed k0 = 100 in all our studies.

4. EXPERIMENTS

4.1. Impact of Feature Selection on Classifier Design

In this experiment, we evaluate the proposed approach by us-
ing the selected subset to design classifiers, which is especially
important in small data scenarios. Though including a large
number of features can provide flexibility, model robustness
can suffer when working with datasets that have a lot of di-
mensions, but very few samples. Consequently, unsupervised
feature selection can be an effective pre-processing step prior
to model design. For all datasets considered in this experiment,
we used the extremely randomized trees (20 estimators) model,
and we report results from 5-fold cross-validation.
Data: For this experiment, we considered 6 datasets from
the Penn Machine Learning Benchmark (PMLB), which en-
compasses a wide range of existing benchmark datasets for
ML algorithms [14]: (i) Breast Cancer - Wisconsin for diag-
nosis of breast tissues with 569 samples in 30 dimensions;
Three datasets consisting of features from 2000 handwritten
digits extracted from a collection of Dutch utility maps - (ii)
Mfeat-Fourier consisting 76 Fourier coefficients of the char-
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Fig. 3. Image Masking Results - Performance of the masks
inferred using the proposed approach in preserving the local
topology of high-dimensional data. For comparison, we show
results obtained using the dimension masking approach in [9].

acter shapes; (iii) Mfeat-pixel comprised of 240 pixel average
values for 2×3 windows; (iv) Mfeat-factor consisting 216 fea-
ture correlation values; (v) Musk Clean1 dataset for predicting
whether a molecule is musk or non-musk with 476 instances
in 168 dimensions; and (vi) Primate splice-junction gene se-
quences data consisting 3186 data points (splice junctions)
described by 180 binary indicator variables.
Baseline: For comparison, we used principal coordinate analy-
sis (PCoA), an adaptation of principal component analysis for
unsupervised dimension selection [6]. The core idea of PCoA
is to identify the canonical basis vectors, in lieu of orthogonal
linear projections in PCA, that span the canonical subspace
which maximally describes the variations of the data:

ωi = max
i∈D

N∑
n=1

(xn[i]− x̄[i])
2
,

where D is the set of input features and x̄ denotes the mean
of the dataset. Using the above strategy, we obtain the feature
set Ω = {ωi} by greedily selecting features by ranking them
based on their variances across the dataset.
Results: Figure 2 shows the classification performance (mea-
sured using the F1-score) obtained using the selected features,
by incrementally adding one feature at a time. For the proposed
approach, we ranked the features based on the importance
scores defined in (3). We can see that the proposed approach
consistently outperforms the baseline technique, particularly
with a small number of features. For example, with the Mfeat-
Fourier dataset, the proposed approach reaches an F1-score of
0.8 with just 10 features, while PCoA requires 40 dimensions
to achieve the same validation performance. Interestingly, with
these HD datasets, adding more features does not always lead
to improved performances. For example, the Musk Clean1
dataset requires only 3 features from our approach to reach an
F1-score of 0.99, however the performance obtained using all
168 features is lower. This clearly evidences the challenge of
dealing with HD feature spaces in small datasets.

Fig. 4. Image Masking Results - Masks learned using the
proposed approach and the baseline technique from [9]. d
corresponds to the number of dimensions.

4.2. Application: Image Masking

An important application of feature selection is in designing
masking patterns for building image sensors. The goal is to
acquire only a subset of pixel locations for a given distribution
of images, such that it provides enough information to recover
the local topology, i.e. neighboring images. Hence, the metric
we use for evaluation is the percentage of neighbors recovered
using only the subset of selected features, which are individual
pixels in this case. For all cases, the number of neighbors in
the full-dimensional space was fixed at 20.
Data: For this experiment, we used a subset of the MNIST
digits dataset, by considering 1000 randomly selected images,
with 100 images for each digit, in order to infer the masking
pattern, and used an unseen set of 5000 images for evaluation.
Baseline: The dimension masking algorithm proposed in [9]
provides a state-of-the-art approach for solving the problem
of identifying critical dimensions that preserve the neighbor-
hood structure. In particular, we use the generalization of
Isomap for dimension selection, and evaluate its performance
in comparison to the proposed approach.
Results: From Figure 3, we can see that the proposed approach
achieves significant improvements ( 20%) in the recovery per-
formance as compared to the state-of-the-art image masking
technique. Furthermore, the masking patterns for the two ap-
proaches are illustrated in Figure 4, which clearly evidence the
effectiveness of the graph analysis approach in localizing the
regions where maximal information can be acquired.

5. CONCLUSION

In this paper, we presented an unsupervised approach to dimen-
sion selection based on graph signal analysis of a blue noise
spectrum. With the help of applications in supervised learn-
ing and image masking, we showed its efficacy over existing
techniques in terms of its characterization of feature spaces,
supervisory performance, and its ability to be parallelized and
scaled. In the future, it would be interesting to (a) evaluate
the approach on datasets with many more dimensions, (b) ex-
tend it to applications such as uncertainty quantification, and
label propagation, and (c) study its robustness with respect to
changes in the formulation of the nearest neighbors graphs.
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