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ABSTRACT

Signals defined on a network or a graph are often prone to errors
due to missing data and noise. In order to restore the graph signal,
interpolation and denoising are two necessary steps along with other
graph signal processing procedures. However, existing graph signal
interpolation and denoising methods are largely decoupled due to
the opposite objectives of the two tasks and the inherent high com-
putational complexity. The goal of this paper is to integrate graph
interpolation and denoising using the Plug-and-Play (PnP) ADMM,
a recently developed technique in image processing. When using
the subsampling process as the forward model and graph filter as
the denoiser, we show that PnP ADMM is equivalent to interpolat-
ing a bandlimited signal. Preliminary results are demonstrated via
experiments, where the proposed method shows significantly better
performance over existing methods.

Index Terms— Graph signal processing, interpolation, denois-
ing, Plug-and-Play ADMM, graph sampling theory

1. INTRODUCTION

Analyzing the topology of a network (or a graph) and processing sig-
nals that live on the network is the center of many problems in net-
working, brain-analysis, weather forecasting, etc [1-6]. However,
an observed graph signal is often subsampled due to missing data,
and is contaiminated with noise. For example, measurements in sen-
sor networks often have missing values due to sensors currently not
working [7-10]. EEG contains large noise because a brain activity
is measured from the surface of the head [11]. In semi-supervised
learning, the number of labeled data is much smaller than that of the
unlabeled data, and we have to estimate labels on the unlabeled ver-
tices correctly [12]. Therefore, the restoration algorithms for graph
signals are highly needed.
A typical signal observation model y € RY is given by

y =Dx+n, ey

where D € RV *¥ is the degradation matrix, x € RY is the original
(graph) signal, n € R" is an additive white Gaussian noise with
zero mean and variance 0. Given y, the goal is to recover x by
overcoming the degradation and the noise.

Interpolation methods for graph signals have been studied in
the context of graph sampling theory [13, 14]. However, most of
the known results are based on the perfect recovery of “bandlim-
ited” graph signals. Methods for non-bandlimited signals have
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been studied little so far [10], and in many cases they need eigen-
decomposition which are computationally expensive.

Denoising methods for graph signals are available. Diffusion
using a heat kernel [15] is one example, but its simple structure
makes the denoising performance limited. Methods such as bilat-
eral/trilateral filters are known to have a strong denoising perfor-
mance [16,17]. However, the naive implementation of these filters in
the graph frequency domain requires eigen-decomposition of graph
Laplacian, which could be expensive. While Chebyshev polynomial
approximation [17] or Krylov subspace technique [15] allows us to
bypass the eigen-decomposition, intensive parameter tuning is still
required to obtain the best result.

In order to integrate interpolation and denoising into a single
optimization framework, in this paper we leverage a newly devel-
oped tool in the image processing literature called the Plug-and-Play
(PnP) ADMM. PnP ADMM is a variation of the standard ADMM
image restoration algorithm [18-21]. It is inspired by a convex opti-
mization solver ADMM [22-24] but does not need to set a regular-
ization function explicitly; instead, a part of the ADMM algorithm
is replaced with a sophisticated denoiser that significantly enhances
the image restoration performance. However, PnP ADMM cannot
be directly used for our graph problem, because an image denoiser
has a very different characteristic than a graph denoiser. For exam-
ple, “patch-based” denoisers such as BM3D [25] is NP-hard for a
graph problem as it needs to search similar signal values that are ly-
ing on similar (i.e., isomorphic) subgraphs to the target subgraph to
be denoised.

The key contribution of this paper is the application of PnP
ADMM to graph signal restoration problems, which is also the first
demonstration of PnP ADMM beyond imaging tasks. The proposed
approach has the following advantages:

e [ts restoration performance is state-of-the-art compared to the

existing restoration methods for graph signals.

e It does not require eigen-decomposition in the algorithm.

e The algorithm has a strong relationship to graph sampling

theory for bandlimited signals [14].

In the experimental results for interpolation and denoising, the pro-
posed method significantly outperforms the existing methods.

2. GRAPH SIGNAL PROCESSING

2.1. Graph and Graph Signal

A graph G = (V, E) consists of the vertex set V and the edge set
£. The number of vertices is N = |V|. Here, x € R is a graph
signal whose ¢th sample is placed on the ith vertex of the graph.
The structure of the graph is represented by the adjacency matrix
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A € RV*¥ the diagonal degree matrix A € RY*™ and the graph
Laplacian matrix L := A — A. The (m, n) element of A, i.e.,
amn > 0, represents the edge weight between mth and nth vertices.
The mth diagonal element of A is defined as drmm =Y, Gmn.
Since L is a real symmetric matrix, it can be decomposed
as L = VAV, where V. € RY¥*V i the eigenvector ma-
trix in which eigenvectors are arranged in each column and A =
diag(Mo, A1, ..., An—1) is the diagonal eigenvalue matrix. We as-
sume the eigenvalues are ordered as follows: Ao < A < - <

An—1. The graph Fourier transform (GFT) is defined as X = VT);

2.2. Graph Sampling Theory

Let us consider the subsampling of x that generates a sampled signal
whose number of samples is M (M < N). The sampling matrix
W € {0,1}M*¥ is defined as

1
U =
-4

where M is the index of the sampled signal; the indices of the sam-
pled signal is represented as M = {Mao,..., Ma—1}. Simply,
subsampling of x is defined as xpq = ¥x.

In graph sampling theory, we consider the problem to recover x
perfectly from its subsampled version x . While there exist many
methods for interpolation [13, 14], we describe one of the interpo-
lation methods [14] for bandlimited graph signals. The bandlimited
graph signal satisfies the following condition:

Tr =0forallk > K, 3)

where T, is the kth element of X and K is the bandwidth.
If the graph signal satisfies (3), it can be perfectly recovered
from x a4 if W satisfies [14, Theorem 1]

rank(¥V ) = K, 4)

j:Mi7

otherwise,

@)

where V(g = [vo,V1,...,Vvk_1] is the first K columns of V.
As a result, the interpolation of the downsampled graph signal is
represented as

X:V(K)(‘I/V(K))ilxM. (5)

3. PLUG-AND-PLAY ADMM

3.1. ADMM

ADMM [22] is known as an algorithm for solving a certain con-
vex optimization problem and widely used for image restoration
[23,24,26]. ADMM solves the minimization problem with the non-
differentiable convex function

arg min f(x) + As(x), (6)

where f(x) is strongly convex and s(x) is convex. For solving (6)
using ADMM, it is transformed to

arg min f(x) + As(v)

X,V

S.t.xX = V. 7

This minimization problem can be solved by the following iterative
algorithm:

x Y = arg min £(x) + £} — x|, ®)

v+ = arg min As(v) + g||v — M2, ©)
v

ak D) — g | (D) _ ey (10)

where x*) = v(® — g® $®) = x(b+D 4 55 and p > 0. Since
(8) relates to the image model of (1), it is called an inverse module.
Since (9) relates to the regularization function s(x), it is called a
denoising module.

3.2. PnP ADMM

In the minimization problem (7), the objective function f(x) and the
regularization function s(x) must be determined before running the
algorithm. f(x) is determined according to the image degradation
model. On the other hand, s(x) must be determined beforehand
according to the subjective belief of the original signal.

PnP ADMM [18, 27] has been proposed as a method of auto-
matically and implicitly determining s(x) by replacing the denoisng
module in (9) by some off-the-shelf image denoising algorithm, e.g.,
non-local means [28,29], BM3D [25], etc. Let R(-) be one of the
off-the-shelf image denoising algorithms. Here, (9) is rewritten in
the PnP algorithm as

vERD — (v, (11)

By doing so, the image restoration performance is improved while
the entire optimization problem generally becomes nonconvex.

In PnP ADMM, s(x) is usually unknown due to the complex
denoiser R(-). However, in the case that R(v) = Wv, where W €

RN >N is a symmetric smoothing filter, s(x) becomes [18,27]
s(x) = %XT(W_I —I)x, (12)

where I is the identity matrix. By substituting (12) and f(x) =
1||Dx — y||? for (6), the restored signal can be written as the fol-
lowing closed-form solution:

X =UZ(ZU'D'DUT 4+ p=(I-%))'SU D'y, (13)

where U is the eigenvector matrix of W and X is the eigenvalue
matrix of W, i.e., W := USU".

4. PNP ADMM-BASED GRAPH SIGNAL RESTORATION

4.1. Applying PnP ADMM to Graph Signals

It is relatively easy to use the PnP iteration (8), (11), (10) for graph
signal restoration. The inverse module (8) can be applied straight-
forwardly for graph signals because the degradation model can be
described in (1) even for graph signal processing.

In the denoising module, the image denoiser R(-) is replaced by
a denoising method using graphs and graph spectra. However, such
method should be light-weighted, meaning that we should avoid

e cigen-decomposition to calculate the GFT basis, and
e parameter tuning which could be costly.

The first problem can be mitigated by using Chebyshev polynomial
approximation, whereas the second problem can be solved with a
“one-shot” denoising algorithm. In this paper, we use the diffusion
on graphs [15] and the graph trilateral filter (GTF) with the fixed pa-
rameter [17] as the light-weight denoisers for graph signals. We also
use Chebyshev polynomial approximation for GTF and Krylov sub-
space technique for heat kernel to bypass the eigen-decomposition,
as presented by the original papers.
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The iteration of PnP ADMM of the proposed method is therefore
represented as follows:

x5 = 2D "D + pI) " (2Dy + px®)), (14)
v = Ry (), (15)
G0HD = gy (B Dy (16)

where R, is the light-weight graph signal denoiser. (14) is derived
from solving (8) with f(x) = ||Dx — y||?. If R4(-) does not re-
quire eigen-decomposition and the degradation matrix D is a diago-
nal matrix, e.g., interpolation or denoising, the entire algorithm does
not need the matrix decomposition or inversion.

While the GTF [17] with Chebyshev polynomial approximation
is also an eigen-decomposition-free algorithm, it requires hundreds
of the GTFs to determine the optimal parameter that minimizes the
estimated MSE. Additionally, in its optimization process, the GTF
filtering matrix (not a filtered signal vector) of size /N X N should be
calculated and stored: It leads to the huge storage costs. In contrast,
the above PnP ADMM algorithm just needs the filtered vector in
(14)—(16) that significantly reduces the computation cost.

In the proposed method, the parameter p in (14) should be tuned
depending on the denoising algorithm used and the (estimated) noise
level. In this paper, we select p with p = ¢102 + ca, where ¢; and
co are chosen experimentally. In our experiments in the following
section, such p is robust enough for all situations.

4.2. Relationship with Graph Sampling Theory

Here, we reveal the relationship between the interpolation method
of the graph sampling theory (5) and the graph signal interpolation
with PnP ADMM. In this subsection, we assume that the degradation
matrix D is a binary diagonal matrix D € {0, 1}V*¥,

Theorem 1. Assume that the graph signal is noise-free and the sam-
pling matrix satisfies (4). Additionally, let Ry(-) be the denoising
module (11) with the ideal graph low-pass filter represented as fol-
lows:

Ry(¥) = W'V := Vhigea(A) Vv, (17)
where higeal(A) = diag(1,...,1,0,...,0). In this case, the graph
—— ——

K N—K

signal interpolation using PnP ADMM, i.e., (14)—(16), is identical
to the interpolation of the bandlimited graph signal in (5).

Proof. Since W' is a symmetric matrix, the interpolated signal us-
ing PnP ADMM can be computed by a closed-form as in (13). It is
represented as

x' = VA (A'V' D'DVA'+pA' (I-A"))'A'V Dy, (18)

where A’ := higea (A).

Because A’ is the diagonal matrix whose elements are binary
values, it is clear that A’(I— A’) = O. Additionally, VA’ =
[Vik) O]. Therefore, (18) can be rewritten as

x' = Vi) (VgD 'DV() ' VgD y. (19)

Here, D is a zero-padding matrix that fills missing values with
0. The sampling matrix W is also a matrix that extracts samples at
the sampling point specified by M. D and ¥ have the relationship
D=9"¥ D'D = D is also satisfied. With the above relation-
ships, we can further rewrite (19) as

X' = Vi) (TV (i) (BV (1)) BV () By, (20)

(@) (b)

Fig. 1. Original graph signals. (a) Real weather data in the US
used for the interpolation experiment. (b) Graph signal on Swiss
roll graph used for the denoising experiment.

Here, the sampling matrix satisfies (4): (¥V K>)’1 can be

computed. (20) then becomes
X' = V) (TV ) T (TV i) ) THEV ) By
= Vi (TV i) Py @1
Since xp = Wy, the interpolated signal finally becomes
X/ :V(K)(\I’V(K>)_1XM. (22)
This is identical to (5). O

As a result, PnP ADMM with the ideal smoothing filter (17) is
the same as the interpolation based on the graph sampling theory,
regardless of p. This means the PnP-based method can perfectly
recover bandlimited graph signals.

While the original recovering method needs matrix inversion,
our PnP-based interpolation can avoid it as mentioned previously. It
leads to that, for larger graphs, the PnP-based interpolation is faster
than the original one. We numerically verify this in the following
section.

5. EXPERIMENTAL RESULTS

In this section, we compare the restoration performance of graph
siganls for interpolation and denoising. The computation time is
also compared. All experiments were implemented with MATLAB
R2015b, and they were run on Intel Xeon E5-2690 2.9 GHz CPU
with 64 GB RAM.

In this paper, we use the GTF or heat kernel as the denoising
module in (11). They are abbreviated as PnP-GTF and PnP-Heat. In
the original GTF, a regularization parameter (of the GTF; not p) is
optimized in order to minimize the MSE between the restored and
original signals. The GTFs with/without parameter optimization are
denoted as GTFp and GTFunopt, respectively. In PnP-GTF, we used
GTFunopt With the fixed parameter 1 as the denoising module, since
its optimization is time-consuming.

GTF depends not only on the graph but also on the signal values
on the graph. However, in our algorithm, it is inefficient to change
the filter coefficients of the GTF in each iteration according to v,
Therefore, we reuse its filter coefficients in each iteration; they are
determined from the pre-restored signal.

For the heat kernel h(\) = e~ ', a time parameter ¢ is fixed to
t = 0.1 in all experiments.

5.1. Interpolation

In the experiment for interpolation, the proposed method is com-
pared with gsp_interpolate [30] in GSPBOX [31] (abbrevi-
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Fig. 2. Interpolation result of graph sampling theory and proposed
method. (a) Original signal. (b) Sampled signal. (c) Interpolated
signal by GSamp (MSE: 3.49 x 10~2%). (d) Interpolated signal by
the proposed method using (17) (MSE: 4.39 x 10729).

Table 1. Interpolation results (average MSEs (x 10~2) for 100 runs)
Missing rate [%] 10 20 30 40 50
Glnt 9.54 9.06 8.69 841 8.14
GSamp 474 494 525 574 645
GInt + GTFop 3,57 392 435 480 538
PnP-Heat 417 437 462 490 5.28
PnP-GTF 374 400 433 474 532

ated as GInt) and the reconstruction method (5) of the graph sam-
pling theory [14] (abbreviated as GSamp). Because the bandwidth
K for (5) is needed (but it is generally not known a priori), we set
K = |N/10]. The interpolation result of Glnt is used to calculate
edge weighs for PnP-GTF. For a comparison purpose, the two-step
algorithm is also applied to the data. It first estimates the missing
values with Glnt, and then performs denoising to the interpolated
signal with GTF,y, (abbreviated as GInt + GTF).

In this experiment, we use Quality Controlled Local Climatolog-
ical Data, which is real weather data recorded by NOAA [32]. We
select average temperature data in contiguous United States on Aug.
1, 2017. The number of stations is N = 1052. The dynamic range
of the data is normalized to [0, 1]. After then, random sampling is
performed and the white Gaussian noise with o = 0.1 is added. The
graph is generated by £ nearest neighbor with k£ = 10.

The original signal is shown in Fig. 1(a), and the interpolation
results are shown in Table 1. It is clear that the proposed methods are
significantly better than GInt and GSamp for all missing rates, and is
comparable to or even outperforms GInt + GTF,,.. Note that the pro-
posed method is a one-step integrated restoration and is significantly
faster than GInt + GTF,; (see Section 2?).

Within the proposed methods, PnP-GTF shows the best results
with the 10-40 % missing rates, and PnP-Heat shows the best results
for the 50 % missing rate.

5.2. Comparison with Graph Sampling Theory

Here, a completely bandlimited graph signal with the bandwidth
K = 10 is recovered. In this experiment, the signal on a random
sensor graph with N = 400 is used, and the bandlimited graph sig-
nal is generated by x = V [f‘ T OT} T, where f € R is a random
signal conforming to the normal distribution with zero mean and
variance 1. The sampled signal is chosen to satisfy (4), where the
number of sampled signal is M = 10. As the denoiser R4(-), we
use the ideal graph low-pass filter in (17) to demonstrate Theorem 1.

The recovered graph signals are shown in Fig. 2 along with
their MSEs. It was also experimentally determined that the proposed
method with the ideal filter can perfectly recover the bandlimited
graph signal.

Table 2. Denoising Results (average MSEs for 100 runs)
o 10 20 30 40 50
Heat kernel | 67.6 154 298 499 757
GTFopt 62.6 139 205 263 312
GTFunopt 65.6 156 306 517 787
PnP-Heat 822 138 194 244 287
PnP-GTF 79.6 155 208 256 300

Noisy signal [ 98.4 394 885 1574 2459

Table 3. Computation time [sec.] (OoM: Out of Memory)

Interpolation

N 107 10° 107 10° 10°
GSamp 0.003 0.110 6497 OoM OoM
Glnt 0.003 0018 2552 OoM OoM
PnP-GTF | 0412 1270 12.61 1407 2694
PnP-Heat | 2.648 4.436 3730 360.9 3538

Denoising

N 10° 10° 107 10° 10°
GTFop 3348 1292 42735 OoM OoM
GTFuop: | 0.028 0237 2452 29.05 1126
Heat kernel | 0.003  0.005 0.037 0335 3.429
PnP-GTF | 0412 1347 1248 1529 3220
PnP-Heat | 2.637 4.650 37.72 3658 3508

5.3. Denoising

Next, the denoising performance is compared. In this experiment,
the signal on Swiss roll graph with N = 400, as shown in Fig. 1(b),
is used.

The denoising results are summarized in Table 2. According to
the table, PnP-Heat shows the best results for ¢ € [20,50]. It is
worth noting that PnP-GTF is better than the GTF, for o = 40 and
50, despite of the fixed regularization parameter.

5.4. Computation time

The average computation times after 10 runs are shown in Table
3. For interpolation, the proposed method is faster than GSamp for
N > 10*. The computation time for GInt is shorter than the other
two, however, its reconstruction performance is worse than them.
For denoising, the proposed methods are always faster than GTFp.
While GTFuope and the diffusion are fast, their performance is poor.

It is important to note that GSamp, GlInt, and GTF, cannot
compute the restored signal for N > 10° due to the excessive usage
of memory. In contrast, the proposed method was stably executed
until (at least) N = 10°.

6. CONCLUSION

In this paper, the graph signal restoration method using PnP ADMM
is proposed. Though its basic algorithm is similar to that for image
restoration, it has many desirable properties for graph signal process-
ing. Furthermore, it has a strong relationship with the interpolation
based on graph sampling theory. Since there have been proposed
various sampling theories for graph signals like [13], studying fur-
ther connection to the sampling theory is one of future works. In the
experiment, it was shown that the performances of interpolation and
denoising of the proposed method are significantly better than those
of the existing approaches.
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