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ABSTRACT

Because the spectrum folding phenomenon affects the down-
sampling of graph signals, both critically sampled and over-
sampled graph filter banks with down-sampling operations
can only be applied to bipartite graphs. However, general
graph signals may not reside on bipartite graph structures. In
this paper, we present a novel bipartite graph approximation
algorithm, which aims to find a bipartite graph sufficiently
close to the original graph. To tackle this problem, we first
show that, if the non-negativity constraint of adjacency matri-
ces is removed, closed-form solutions can be readily obtained
by the eigenvalue decomposition. Based on this fact, an al-
ternating direction method of multipliers (ADMM) is further
developed to achieve a real adjacency matrix. Experimen-
tal results show that the proposed algorithm outperforms the
other proposals in terms of approximation accuracy.

Index Terms— Alternating direction method of multipli-
ers (ADMM), bipartite graph, eigenvalue decomposition.

1. INTRODUCTION

Graph signal processing [1]-[3] has found many applications
in the fields of science and engineering, such as sensor net-
works [4, 5], social networks [6, 7], traffic networks [8], and
so on. An undirected graph G = (V, E) is composed by
a set of vertices, among which there are edges representing
the similarity of vertices. Generally, each edge is assigned
a nonnegative weight ai,j , i, j ∈ V and (i, j) ∈ E , to in-
dicate the reliability of the corresponding link. Collecting
all the weights, one can obtain the adjacency matrix A =
[ai,j ] ∈ RN×N , where N denotes the number of vertices,
i.e., N = |V|. Another important quantity to describe graph
structures is the combinatorial graph Laplacian matrix defined
by L = D − A, where D represents the diagonal degree
matrix with its (i, i)-th diagonal element equal to

∑
j ai,j .

The normalized Laplacian can be further computed by L =
D−1/2LD−1/2. In this paper, we focus on the optimization
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of adjacency matrix A. But the proposed algorithm can also
be applied to handle L with appropriate modification.

Multi-channel signal processing over graphs have drawn
much attention in the last decade. Recent advances show
that a critically sampled two-channel wavelet filter-bank de-
sign leads to compact representation of graph signals [9, 10].
Similar to the aliasing effect in regular signal processing, the
spectrum folding is also observed in downsampling of graph
signals. It has been proven that, in order to achieve both criti-
cal sampling and perfect reconstruction, the underlying graph
must be bipartite [10]. However, general graphs do not sat-
isfy this requirement. To deal with this challenge, the orig-
inal non-bipartite graph has to be first decomposed to a set
of bipartite subgraphs. Each bipartite subgraph has all the
vertices and a portion of edges of the original graph. Then,
the filter-banks can be applied to each subgraph, leading to
multi-dimensional transform. Harry’s algorithm [11] based
on graph coloring is widely adopted to conduct the bipar-
tite subgraph decomposition. It assumes that the decomposi-
tion contains log2K subgraphs if the graph is a K-colorable
graph. Then, in each subgraph, all the colored vertices are
separated into two disjoint sets to represent two colors and
only the edges connecting vertices with different colors could
be permitted in each bipartite subgraph. However, its perfor-
mance highly relies on graph coloring, which is NP-hard [12].

Another bipartite subgraph decomposition algorithm was
proposed in [13], which aims to improve energy compaction
in bipartite subgraphs. To this end, two criteria are adopted
in practical optimization. First, to preserver the spectral char-
acteristics of the original graph, the Kullback–Leibler diver-
gence metric is minimized. Second, the multiplicity of eigen-
value at frequency 1 for the normalized graph Laplacian is
minimized to avoid accumulating energies at frequency 1.
Due to the nonconvexity of the resulting problem, the linear
approximation is applied to simplify the objective function.
Another local heuristic approach is also developed in [14] for
fast implementation and accurate rank optimization.

Aforementioned algorithms aims to decompose the orig-
inal non-bipartite graph into a set of edge-disjoint bipartite
subgraphs, on which filter-banks can be applied. Another
strategy to implement multi-channel filtering on an arbitrary
graph is by graph oversampling [15, 16], which appends some
vertices and edges to the original graph. In [16], an efficient
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graph oversampling approach is proposed for an arbitrary K-
colorable graph. The appended vertices are just above some
vertices in the original graph, so that they have the same val-
ues. These twin-vertices can be connected by vertical edges.
However, this approach also depends on graph coloring. Fur-
thermore, in practice, the number of vertices and edges ap-
pended could be too large, which increases computational
cost in the subsequent filtering.

In this paper, we consider a more straightforward way to
implement two-channel graph signal filtering. Specifically,
one first constructs a bipartite graph, which has the minimum
approximation error to the original non-bipartite graph. Then,
two-channel wavelet filter-banks can be applied on the bipar-
tite graph obtained. Different to two strategies mentioned be-
fore, the proposed algorithm is independent on graph color-
ing, but the resulting bipartite graph does not need to keep
all the edges in the original graph, especially those with small
weights. This is reasonable when some links between vertices
are unreliable. The rest part of the paper is organized as fol-
lows. In section II, we introduce the bipartite graph approxi-
mation problem considered in this paper. Then, an alternating
direction method of multipliers (ADMM) is further developed
in Section III to solve the approximation problem. The per-
formance of the proposed algorithm is evaluated in Section
IV. Conclusions are summarized in section V.

2. PROBLEM FORMULATION

Let A be the adjacency matrix of an arbitrary graph. In gen-
eral, its eigenvalues are unbounded and can be positive or neg-
ative. But, when considering a bipartite graph, its eigenvalues
are distributed in a symmetric way around zero [17]. Based
on this observation, the bipartite graph approximation prob-
lem considered in this paper is cast as

min
Λ,U

∥∥A−UΛUT
∥∥2

F
(1a)

s.t. UTU = UUT = I (1b)[
UΛUT

]
i,j
≥ 0, i, j = 1, . . . N, (1c)[

UΛUT
]
i,i
≥ 0, i = 1, . . . N, (1d)

where U is the eigen vector matrix of the adjacency matrix
for a bipartite graph, and the diagonal matrix Λ contains all
the eigenvalues of the adjacency matrix, i.e.,

diag (Λ) = λ = [λ1 λ2 . . . λN ]T . (2)

To achieve a bipartite graph, eigenvalues {λi} should satisfy
λi = −λN−i+1 for i = 1, . . . , N . This property will be taken
into account when optimizing eigenvalues {λi}. To proceed,
in the latter discussion we first ignore constraints (1c) and
(1d). When developing the ADMM algorithm in the next sec-
tion, we shall take them into account again to achieve a real
bipartite graph.

To tackle the simplified (1), we reformulate the objective
function as∥∥A−UΛUT

∥∥2

F
= Tr

{
A2
}

+ Tr
{

Λ2
}

− 2Tr
{
ATUΛUT

}
.

(3)

Let the eigenvalue decomposition of A be A = V∆VT

where diag (∆) = η = [η1 η2 . . . ηN ]T . Without the loss
of generalization, we assume that {ηi} are arranged in a non-
ascending order. Then, (3) is equivalently written by∥∥A−UΛUT

∥∥2

F
= Tr

{
A2
}

+ Tr
{

Λ2
}
− 2Tr

{
∆PΛPT

}
= Tr

{
A2
}

+ Tr
{

Λ2
}
− 2ηT (P ◦P)λ

(4)
where ◦ denotes the elementwise product of two matrices, and

P = VTU. (5)

Now, the simplified (1) can be reformulated as

min
λ,P

λTλ− 2ηT (P ◦P)λ (6a)

s.t. PTP = PPT = I. (6b)

Once the optimal solution (λ∗,P∗) to the above problem is
obtained, the optimal solution to the simplified (1) can be re-
covered by B∗ = U∗diag {λ∗}U∗T where U∗ = VP∗.

To achieve the optimal solution to (6), we introduce the
following theorem. Since eigenvalues in λ∗ are symmetric
around zero, only half of eigenvalues are presented below.

Theorem 1. The optimal solution (λ∗,P∗) to (6) is given by

λ∗i =
1

2
(ηi − ηN−i+1) , i = 1, . . . , dN/2e (7)

P∗ =


±1

±1
. . .

±1

 (8)

where dxe denotes the integer closest to x towards infinity.

Proof. In this proof, we only consider the case of an even N .
But the proof is also applicable for an odd N . To proceed,
we define Q = P ◦ P and take it into (6). Because P is a
orthogonormal matrix, it can be verified that Q is a doubly
stochastic matrix, that is, Qi,j ≥ 0 for i, j = 1, . . . , N , Q ·
1 = 1, and QT · 1 = 1. Using Q, (6) can be rewritten as

min
λ,Q

λTλ− 2ηTQλ (9a)

s.t. Q · 1 = QT · 1 = 1 (9b)
Qi,j ≥ 0, i, j = 1, . . . , N. (9c)

Note that the orthogonormal constraint (6b) is now replaced
by (9b) and (9c).
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Due to its symmetric distribution around zero, λ can be
represented by λ = [x − x̄]T where x = [λ1 λ2 . . . λN/2]T

and x̄ = [λN/2 λN/2−1 . . . λ1]T . We further decompose
Q as Q = [Q1 Q2] where Q1, Q2 ∈ RN×N/2. Then, the
objective function of (9) is simplified to

λTλ− 2ηTQλ = 2xTx− 2ηT
(
Q1 − Q̄2

)
x

= 2

∥∥∥∥x− 1

2

(
Q1 − Q̄2

)T
η

∥∥∥∥2

2

− 1

2

∥∥∥(Q1 − Q̄2

)T
η
∥∥∥2

2

(10)

where Q̄2 is obtained by reversing the column ordering of
Q2. Obviously, the minimizer of (10) is given by

x∗ =
1

2

(
Q1 − Q̄2

)T
η. (11)

On the other hand, given λ (or, equivalently, x), the opti-
mal Q∗ can be obtained by solving

max
Q

Tr
{
QληT

}
(12a)

s.t. Q · 1 = QT · 1 = 1 (12b)
Qi,j ≥ 0, i, j = 1, . . . , N, (12c)

which is a linear program. According to the Birkhoff-von
Neumann Theorem, which states that the extreme points of
the set of doubly stochastic matrices are permutation matrices
[19], the optimal Q∗ to (12) should be a permutation matrix.
In view of this point, to achieve the minimum value of (10) or

the maximum value of
∥∥∥(Q1 − Q̄2

)T
η
∥∥∥2

2
, Q1 and Q2 should

be arranged as

Q1 =

[
I
0

]
, Q2 =

[
0
I

]
, (13)

which essentially means that the optimal Q∗ to (9) is an iden-
tity matrix. Due to Qi,j = P 2

i,j , (13) further implies that the
optimal P∗ is a diagonal matrix of the form given by (8). Fi-
nally, combined with (11), we obtain (7).

The above theorem implies that the optimal U∗ to the sim-
plified (1) are essentially equal to V, up to multiplying−1 on
some columns of V. But changing the sign of one eigen vec-
tor does not lead to a different solution to (1). So in the latter
discussion, we assume P∗ = I and, thus, U∗ = V.

3. ADMM ALGORITHM

In the previous development, we ignore constraints (1c) and
(1d). Thereby, the resulting solution is not a real adjacency
matrix of a bipartite graph. To fix this issue, we shall develop
an ADMM algorithm in the sequel. First, (1) is rewritten as

min
B,Λ,U

‖A−B‖2F (14a)

s.t. B = UΛUT . (14b)

Note that, in the above formulation, there are implicit con-
straints on B, Λ and U, that is, Bi,j ≥ 0 and Bi,i = 0,
λi = −λN−i+1, UTU = UUT = I. The augmented La-
grangian function of (14) is given by

Lρ(B,U,Λ;W) = ‖A−B‖2F + Tr
{
WT

(
B−UΛUT

)}
+
ρ

2

∥∥B−UΛUT
∥∥2

F
. (15)

The ADMM algorithm needs to alternately solve the fol-
lowing problems to achieve, respectively, solutions B(k+1),
Λ(k+1) and U(k+1), and updates W(k) and ρ(k) until some
stopping criterion is satisfied

B(k+1) = arg min
B

∥∥∥B̃(k) −B
∥∥∥2

F
(16)(

Λ(k+1),U(k+1)
)

= arg min
Λ,U

∥∥∥Z̃(k) −UΛUT
∥∥∥2

F
(17)

W(k+1) = W(k) + ρ(k)
(
B(k+1) − Z(k+1)

)
(18)

ρ(k+1) = ηρ(k) (19)

where

B̃(k) =
2A−W(k) + ρ(k)U(k)Λ(k)U(k)T

2 + ρ(k)
(20)

Z̃(k) =
W(k)

ρ(k)
+ B(k+1) (21)

Z(k+1) = U(k+1)Λ(k+1)U(k+1)T . (22)

The optimal solution to (16) is obtained by replacing negative
and diagonal elements of B̃(k) by zeros. Problem (17) can be
tackled by the approach developed in the previous section.

Note that, in the above development, we essentially as-
sume that an edge can be appended between a pair of vertices,
which are originally not connected in A. But this assumption
could be problematic. To fix this issue, we can reserve all the
zero elements of A in B(k+1) when solving (16).

It can be noticed that the computation of the proposed
ADMM algorithm is dominated by the eigenvalue decompo-
sition of Z̃(k), when solving (17). Since Z̃(k) can be a dense
matrix, its computational complexity is O(N3), which is too
expensive for a large scale graph. To overcome this difficulty,
one can first decompose the original graph to a number of sub-
graphs of smaller size. Then, the proposed ADMM algorithm
is independently applied on each subgraph. The final bipartite
graph can be obtained by merging sub-bipartite graphs. The
subgraph decomposition needs to cut off some edges, which
may be reserved in the optimal solution to (1). To reduce the
overall bipartite graph approximation error, one can employ
the minimum cut algorithm to accomplish the subgraph de-
composition [18].
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Fig. 1. Variation of average bipartite graph approximation
with respect to communication range R.

4. EXPERIMENTAL RESULTS

The performance of the proposed ADMM-based Bipartite
Graph Approximation (ADMM-BGA for short) is evaluated
in this section. In our experiments, the original non-bipartite
graphs are generated by sensor networks. We assume that
each network is composed by N sensors, randomly dis-
tributed within a unit square [0, 1] × [0, 1]. Each sensor is
considered a vertex of the corresponding graph. A pair of
sensors are considered to be neighbors if their distance is
within a communication range R. Weight ai,j assigned to the
edge between neighboring sensors i and j is computed by

ai,j = exp

(
−
‖pi − pj‖22

2σ2

)
(23)

where pi denotes the planar position of sensor i. In our ex-
periment, σ2 is chosen as 10.

For comparison, we also employ the Harary’s decomposi-
tion [10], BSD on MFS [13], and OSGLM algorithm [16] in
our experiments. The approximation accuracy is reflected by

eBGA =
‖A−B‖2F
‖A‖2F

. (24)

Example 1: Evaluation of bipartite graph approxima-
tion. In the first experiment, the number N of sensors is cho-
sen equal to 50. Communication range R varies from 0.3 to
0.7. For each R, 100 independent simulations are conducted
and the variation of the average approximation error with re-
spect to R is illustrated in Fig. 1.

It can be observed that the average approximation error
becomes larger with the increase of R. For a fixed N , in-
creasing R yields a denser graph. So all the approaches need
to cut off more edges of the original graphs and, thus, yield
larger errors of bipartite graph approximation. But, among all
the algorithms, the proposed algorithm achieves the smallest
approximation error.

Table 1. Average SNR gain of ADMM-BGA over other ap-
proaches

Percentage (r%)
30 40 50 60

Harary’s 3.45 4.82 4.43 4.01
MFS 1.80 3.17 1.18 0.57

OSGLM 1.21 0.42 0.90 −0.30

Example 2: Evaluation of graph signal reconstruction
via two-channel wavelet filter-banks. In this experiment,
we evaluate the graph signal reconstruction performance of
bipartite graphs obtained by the proposed algorithm. Original
graphs are still obtained by sensor networks using N = 30
and R = 0.5. Over the networks, we assume that the model
for graph signals f ∈ RN is a Gaussian Markov random field
(GMRF) [20], that is, f ∼ N (µ,Σ) where µ is the mean vec-
tor, and Σ is the covariance matrix specified by the Laplacian
matrix L of an arbitrary graph G, i.e., Σ−1 = L + δI. For
simplicity, we assume that µ = 0. Parameter δ is chosen as
δ = 0.1. Then, the two-channel wavelet filter-banks proposed
in [10] are applied on an approximate bipartite graph or sub-
graphs, obtained by each algorithm. Finally, we reconstruct
the signals using the largest r% wavelet coefficients. For dif-
ferent r, the simulation is conducted independently for 100
times and the average SNR gain over the other approaches is
computed and summarized in Table 1.

From Table 1, one can observe that the proposed al-
gorithm demonstrates better reconstruction performance of
graph signals than the other approaches, when r is small.
This implies that the ADMM-BGA is more capable of cap-
turing the essential structures of a non-bipartite graph. With
the increase of r, the OSGLM outperforms than the other ap-
proaches, due to the redundancy existing in the oversampled
graph.

5. CONCLUSIONS

In this paper, we propose a novel bipartite graph approxima-
tion algorithm. The original problem aims to minimize the
approximation error between adjacency matrices of an arbi-
trary non-bipartite graph and its approximate bipartite coun-
terpart. It has been proven that, if the non-negativity con-
straint of adjacency matrices is removed, optimal solutions
can be efficiently obtained by the eigenvalue decomposition.
To obtain a real bipartite graph, an ADMM algorithm is fur-
ther developed, such that the non-negativity of the adjacency
matrix of the resulting bipartite graph can be readily guaran-
teed. Experimental results show that the proposed algorithm
can achieve smaller bipartite graph approximation error and
competitive graph signal reconstruction performance, com-
pared to the other bipartite subgraph decomposition and graph
oversampling approaches.
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