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ABSTRACT

Recovering a graph signal from samples is a central prob-
lem in graph signal processing. Least mean squares (LMS)
method for graph signal estimation is computationally effi-
cient adaptive method. In this paper, we introduce a tech-
nique to robustify LMS with respect to mismatches in the
presumed graph topology. It builds on the fact that graph
LMS converges faster when the graph topology is specified
correctly. We consider two measures of convergence speed,
based on which we develop randomized greedy algorithms
for robust interpolation of graph signals. In simulation stud-
ies, we show that the randomized greedy robust least mean
squares (RGRLMS) outperforms the regular LMS and has
even more potential given a robust sampling design.

Index Terms— Graph signal processing, Laplacian ma-
trix, least mean squares

1. INTRODUCTION

Signal processing on graphs has been a rapidly developing
field of research during the past few years [1, 2, 3]. It deals
with signals lying on irregular domains, which are repre-
sented by graphs. Each unit of a graph signal is associated
to a node in the underlying graph, and the edges of the graph
indicate pairwise connections between the units. The choice
of the graph topology requires some prior information, which
may be based on physical structure of a network, training
data, expert perception, or some other source of data on the
proximity between the units. One of the most important
problems in graph signal processing is interpolation from
samples. If a signal is bandlimited with respect to a graph,
and this graph is known, the signal can be recovered accu-
rately by sampling only small part of the signal.

In this paper, we consider recovering a graph signal, when
the presumed graph differs from the underlying graph. The
effect of such graph error has been of increasing interest re-
cently (see [4, 5, 6]), and as far as we know, the first robust
methods with respect to errors in graph topology was pro-
posed in [7], where graph signal spectral analysis and clus-
tering were considered. However, the authors of [7] assume
knowledge of edgewise probabilities of perturbation, which
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differs from our approach as we only rely on the estimate of
the graph. Our method uses least mean squares estimation
(LMS) of graph signals [8, 9] and is based on connection be-
tween the speed of convergence and the quality of the esti-
mate. It appears to be less important to improve the sampling
strategy part of the solution, since it tolerates more errors in
the presumed graph. However, it is still of interest for a future
work.

Notation: We use boldface capital letters for matrices,
boldface lowercase letters for vectors, and capital calligraphic
letters for sets. The exceptions are 1N which is the N -
dimensional vector full of ones, the M × N matrix full of
ones 1M×N = 1M1>N , and 1A is a matrix of the same size
as A, such that [1A]ij = 1, if aij 6= 0 and [1A]ij = 0, if
aij = 0. The matrix IN×N is the N ×N identity matrix. The
notations (·)>, �, ‖ · ‖, tr{·}, P(·), E{·}, and var(·) stand for
the transpose, Hadamard product, Euclidian norm of a vector,
trace of a matrix, probability, mathematical expectation, and
variance, respectively.

2. LEAST MEAN SQUARES ESTIMATION OF
GRAPH SIGNALS

Graph G = (N , E) consists of a set of N nodesN and the set
of edges E . The adjacency matrix of the graph G, denoted as
A, is an N × N matrix such that aii = 0 for i = 1, . . . , N
and aij 6= 0 if and only if (i, j) ∈ E , i.e., there is a link from
jth node to ith node. In this paper, we consider unweighted
graphs and aij ∈ {0, 1}. If the graph is undirected, the ad-
jacency matrix is symmetric and then graph Laplacian matrix
is defined as L = diag(1>A) − A, where diag(1>A) is a
diagonal matrix of node degrees of the graph. The Lapla-
cian matrix is positive semi-definite, and it has the eigende-
composition L = VΛVH , where the columns of V are the
eigenvectors of L and Λ is a diagonal matrix consisting of the
eigenvalues of L.

A graph signal x on the graph G is anN -dimensional vec-
tor of complex numbers, whose ith element is attributed to the
ith node of the graph. The Graph Fourier Transform (GFT)
of the signal x is defined as s = VHx. The graph signal x is
bandlimited if the cardinality of the support of s, denoted as
F = {i ∈ {1, . . . , N} | si 6= 0}, is smaller than N , and the
bandwidth is |F|. Finally, let us define N × |F| matrix VF
which contains the columns of V given by F .
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Let us assume that x is a bandlimited signal on the graph
G so that its GFT s is nonzero only on the indices of F .
Then we can represent x as x = VFs. The bandwidth |F|
is often, including the examples of this paper, assumed to
be known, but for example in [8], estimation of the band-
width is considered. The graph signal is sampled at M time
points and the sampling strategy will be probabilistic follow-
ing [9]. S[n] denotes the set of sampled nodes at time point
n and DS[n] = diag(d1[n], . . . , dN [n]), where di[n] = 1 if
i ∈ S[n], and 0 otherwise. The model for observations is
given by

y[n] = DS[n](x + ν[n]), n = 1, . . . ,M,

where ν[n] is the measurement noise with zero mean and co-
variance matrix Cν and it is assumed to be temporally inde-
pendent. The LMS method for graph signal interpolation, as
suggested in [8, 9], finds the estimate for s by solving the
following optimization problem

min
s

E‖DS[n](y[n]−VFs)‖2. (1)

Using stochastic gradient descent approach to estimate s,
and after transforming back to signal space, an update step for
estimating x is given by

x̂[n+ 1] = x̂[n] + µBFDS[n](y[n]− x̂[n]) (2)

where µ is step-size and BF = VFVH
F .

Having a good sampling strategy is an important factor
in the success of LMS. Several designs for probabilistic sam-
pling were proposed in [9]. The strategy that we will use
aims to find optimal vector p which assigns probabilities for
the nodes to be sampled, by minimizing the mean square de-
viation of the LMS estimate subject to constraints on the sum
of probabilities and convergence rate. The corresponding op-
timization problem can be written as

min
p

tr
{
VH
F diag(p)CνVF

}
λmin

(
VH
F diag(p)VF

) (3)

s.t. 1>p ≤ P, 0 ≤ pi ≤ pmax
i , i = 1, . . . , N

λmin
(
VH
F diag(p)VF

)
≥ 1− α

2µ

where λmin(·) yields the smallest eigenvalue of the matrix, P
can be seen as a budget constraint which limits the sampling
probabilities, α is a prescribed target value for convergence
rate and pmax

1 , . . . , pmax
N give nodewise bounds for the prob-

abilities.
The objective function is based on approximation of the

mean square deviation derived in [9]:

tr
{(

VH
F diag(p)VF

)−1
VH
F diag(p)CνVF

}
. (4)

The objective function in (3), which is of the form convex
over concave, is an upper bound of the non-convex (4). Thus,

the problem (3) leads to a pseudoconvex optimization prob-
lem, which can be solved with Dinkelbach algorithm using
for example convex program solver CVX [10, 11]. Finding
the global optimum with the Dinkelbach method is guaran-
teed [12]. For more information on this and other approaches
to deal with the non-convexity of (4), see [9].

3. ROBUST LEAST MEAN SQUARES ESTIMATION
OF GRAPH SIGNALS

Success of recovering a graph signal from samples using LMS
estimation depends on two key factors: the sampling prob-
ability p and the matrix BF . Both of them depend on the
presumed underlying graph, but the latter appears to be more
sensitive to errors in the adjacency matrix. While there is a
significant difference in performance between p derived from
(3) using the correct graph and random p, even quite rough
approximation of the graph adjacency matrix for (3) would
still yield satisfactory outcome if BF is accurate. The op-
posite case where p is optimal and BF is erroneous, leads
to significantly worse outcome. Therefore, we first focus on
coping with the issue of having erroneous estimate of BF .

Our method to estimate x robustly with respect to the
choice of the adjacency matrix, is based on the observation
that the LMS algorithm converges the faster, the better the
matrix BF corresponds to x. This connection is utilized so
that the speed of convergence is maximized with respect to
the adjacency matrix behind BF , and the maximizing BF is
used for graph LMS. We consider two criteria for the speed
of convergence. The first one is to use initial value x̂0[0] = 0
and maximize the energy

‖x̂0[M0]‖ (5)

of the estimate after M0 ≤ M steps of algorithm (2). The
second one is to generate two random initial values x̂1[0] and
x̂2[0] and maximize the correlation

cor(x̂1[M0], x̂2[M0]). (6)

Both of the corresponding optimization problems are non-
convex. Thus, we propose a greedy algorithm which involves
sampling candidate adjacency matrices around the prevail-
ing adjacency matrix estimate, and proceeding to the matrix
which gives the maximal value of (5) or (6). This is repeated
until the adjacency matrix estimate does not change. The
sampling is done using one of the graph error models pre-
sented in [4]. The model is written as

Aε1,ε2 = A−∆ε1�A+∆ε2�(1N×N −IN×N −A), (7)

where ∆ε denotes a symmetric random matrix whose ele-
ments (∆)ij = (∆)ji = 1 with probability ε and (∆)ij =
(∆)ji = 0 with probability 1 − ε, i.e., realization of ∆ε is
adjacency matrix of the Erdös-Rényi graph [13]. The param-
eters ε1 and ε2 define the probabilities for deleting and adding
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edges, respectively. The random sampling approach that we
are using is supposedly not optimal, and possibly the sam-
pling can be directed somehow in order to reach faster con-
vergence. Specifically, if prior knowledge on the edge prob-
abilities is available as assumed in [7], it can be incorporated
via changing the sampling procedure.

We call the proposed algorithm randomized greedy robust
least mean squares (RGRLMS) estimator, and summarize it
in Algorithm 1. The outcome of the algorithm is stochas-
tic due to the random generation of the candidate matrices.
Therefore, averaging over several runs of the algorithm is an
option to enhance the accuracy. In Section 4, we compare the
two approaches, (a) and (b) (see Algorithm 1), in means of
simulations, and consider a hybrid of them.

There are two parameters which need to be specified for
the algorithm. The first one is ε̃1 and it can be seen as a step
size, since it defines how close to Â0 the candidate matrices
are picked. In step 3 of the proposed algorithm, five values of
ε̃2 are determined so that the number of edges may increase
or decrease. In model (7), the expected number of edges does
not change when ε2 = (ε1‖A‖0)/(N(N − 1) − ‖A‖0). Pa-
rameter K states how many times one value of ε̃2 is used, the
total number of candidate matrices then being 5K. Too small
value of K leads to getting stuck in a suboptimal solution
whereas excessively large value of K increases the computa-
tional cost without benefit.

Algorithm 1 Randomized greedy robust LMS algorithms
Input: y[1], . . . ,y[M ], DS[1], . . . ,DS[M ], adjacency matrix

estimate Â, step size ε̃1, K
Output: x̂

Initialisation :
(a) x̂0[0] = 0
(b) random initial values x̂1[0] and x̂2[0]

1: while Â 6= Â0 do
2: Â0 ← Â
3: Set ε̃i2 = (i+1)ε̃1w

4(1−w) for i = 1, . . . , 5, where w =

‖Â‖0
N(N−1)

4: Draw a set of adjacency matrices Â1, . . . , Â5K from
the graph error model (7) around Â0 using ε̃1 and each
of ε̃i2 K times.

5: (a) Run (2) for B0
F ,B

1
F , . . . ,B

5K
F with initial value

x̂0[0] = 0.
(b) Run (2) for B0

F ,B
1
F , . . . ,B

5K
F with initial values

x̂1[0] and x̂2[0].
6: Find the adjacency matrix Âmin which yields largest

value of
(a) ‖x̂0[M ]‖
(b) cor(x̂1[M ], x̂2[M ])

7: Â← Âmin

8: end while
9: return x̂[M ] given by LMS with Â

4. SIMULATION STUDY

In this section, we conduct a simulation study where we both
illustrate the performance of the robust estimator and also
give some insights into why it works. The dimensions and
parameters of the data are as follows: N = 100, M = 50,
|F| = 5, the noise covariance matrix Cν is diagonal and the
elements drawn uniformly on [0.1, 0.2], x = VF1|F| is given
by the |F| lowest frequncy components of A and it is stan-
dardized so that 1>x = 0 and x>x = N − 1. The number
of edges in A is 0.1 times the number of pairs of nodes. The
average sampling probability, i.e., 1>p is set to 0.125. Most
of the probabilities are zeros. Depending on the specific A
and Cν , the number of nonzero probabilities varies between
19 and 25 most of the time. In Algorithm 1, we use values
ε̃1 = 0.01 and K = 4, i.e., the number of candidate matrices
is 20. We have noticed these values to be reasonably good in
different setups, but we have not aimed to optimize them for
this specific simulation setup.

Fig. 1 shows results for different levels of adjacency ma-
trix mismatch in three setups. On the left-hand side, we have
the realistic setting where p is obtained using Â given by
the graph error model (7) with ε1 = 0, 0.1, 0.2 and ε2 =
0, 0.025, 0.05. On the right-hand side, p is derived from A,
but otherwise the same matrices Â are used as on the left.
However, since Â = A when ε1 = ε2 = 0, we use the po-
sition on top right to display the results in the case that p is
replaced by p̃ = 1p>0, and ε1 = 0.1 and ε2 = 0.025. Then
the sampling is deterministic. The boxplots are made of cor-
relations between x and x̂ in 400 repetitions with differing
matrices A. The following six estimates are included:

’LMS’ The LMS estimate given by Â. Benchmark for what
is achieved when the adjacency matrix is mislearnt.

’ab(Â)’ The average of one run of (a) and one run of (b).

’2a(Â)’ The average of two runs of (a).

’2b(Â)’ The average of two runs of (b).

’2ab(Â)’ The average of two runs of (a) and two runs of (b).

’A’ The oracle LMS estimate given by A.

Table 1 shows the averages of the mean squared errors
(MSE’s).

When the graph topology is known exactly, the LMS es-
timate is naturally very good, and the robust methods lose
some efficiency, (b) more than (a) and the combination is in
between. However, when there are errors in the presumed
graph, the robust methods become favourable. The difference
is much larger when p is based on A, which implies the de-
mand of robust sampling procedure as well. The top right plot
indicates that RGRLMS needs varying samples, because the
results with p̃ are worse even though the number of sampled
nodes is higher at each time point.
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Fig. 1. Boxplots of correlations between x and x̂ for differ-
ent estimates. On the left-hand side, the sampling probabil-
ities are optimized using the erroneous adjacency matrix Â,
whereas A is used on the right-hand side. On the top right,
p̃ is used instead of p. In a boxplot, the red line marks me-
dian value, the boundaries of the box are 25th and 75th per-
centiles, and the maximum whisker length is defined so that
the range within whiskers would cover approximately 99.3%
of the points if they were normally distributed with those 25th
and 75th percentiles. The points outside the whiskers are
marked by red plus signs.

We also study how the measures of convergence speed in
Algorithm 1 and the estimation accuracy are related at dif-
ferent numbers of time points M . For this, 20 adjacency
matrices are generated and for each of them the LMS se-
quence x̂[1], . . . , x̂[100] is computed with respect to both p
and p̃. Fig. 2 shows the averages of correlations between
cor(x, x̂[M ]) and (a) ‖x̂0[M ]‖ and (b) cor(x̂1[M ], x̂2[M ])
for M = 1, . . . , 100. On the left, the sampling probabili-
ties are optimized with respect to Â, whereas on the right,
A is used. Congruently with the results in Fig. 1, we notice
from Fig. 2 that the correlations are higher when the sampling
probabilities correspond to the underlying adjacency matrix
A. For small M , the correlations are higher with p̃ than with
p, probably due to the fact that 1>N p̃ > 1>Np. However, in

Table 1. Average MSE’s for the estimators in the same simu-
lation setup as in Fig. 1. The setups are numbered as follows:
1. Â = A, 2. Â = A0.1,0.025, p from Â, 3. Â = A0.2,0.05,
p from Â, 4. Â = A0.1,0.025, p̃ from A, 5. Â = A0.1,0.025,
p from A, 6. Â = A0.2,0.05, p from A.

LMS ab(Â) 2a(Â) 2b(Â) 2ab(Â) A
1. 0.28 0.36 0.30 0.44 0.35 0.28
2. 0.70 0.63 0.62 0.65 0.61 0.44
3. 0.87 0.78 0.78 0.78 0.75 0.53
4. 0.86 1.02 0.96 1.14 0.86 0.03
5. 0.69 0.48 0.51 0.47 0.47 0.28
6. 0.84 0.55 0.64 0.50 0.54 0.28

the case of p̃, i.e., when the same set of nodes is sampled at
each time point, the correlation fades as M increases. In the
case of probabilistic sampling, the correlation increases with
M before leveling off around M = 40.
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Fig. 2. Correlations between cor(x, x̂) and the values given in
step 5 of Algorithm 1 for M = 1, . . . , 100. On the left-hand
side p and p̃ are derived from Â which is a realization of (7)
with ε1 = 0.1 and ε2 = 0.025, and on the right-hand side p
and p̃ are derived from the underlying adjacency matrix A.

5. CONCLUSION

For graph signal recovery from samples, we have proposed
randomized greedy robust LMS method, which aims to be ro-
bust with respect to mismatch between the presumed graph
topology and that of the underlying graph signal. In graph
LMS, the mismatch affects the choices of the sampling and
interpolation strategies. The proposed RGRLMS algorithm
only modifies the interpolation part and it is based on the cor-
relation between how fast LMS convergences and how good
the LMS estimate is for different graph topology assumptions.
The correlation is stronger when the sampling probabilities
are optimal, which implies that finding a robust sampling de-
sign is of interest as well, but it is left as a topic for future
research. Also, it is worth studying whether the randomized
greedy approach could be replaced by a more efficient way to
handle the introduced optimization problem.
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