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ABSTRACT
We propose a method for graph learning from spatiotemporal mea-
surements. We aim at inferring time-varying graphs under the as-
sumption that changes in graph topology and weights are sparse in
time. The problem is formulated as a convex optimization problem
to impose a constraint on the temporal relation of the time-varying
graph. Experimental results with synthetic data show the effective-
ness of our proposed method.

Index Terms— Graph learning, time-varying graph, time-
varying network, network inference, dynamic graph,

1. INTRODUCTION

Many signals in various networks, e.g., social, brain, traffic, electri-
cal, and sensor networks, exhibit structure that can be represented
as a graph. A graph, consisting of sets of nodes and edges, enables
us to efficiently analyze data by utilizing such structural informa-
tion [1–7]. However, in many cases graphs are not given a priori;
hence, graph learning, a technique that estimates a graph from ob-
served data, is needed in various applications.

Two main types of approaches have been proposed for graph
learning. Smoothness-based approaches estimate a graph by solv-
ing an optimization problem so that the measurements are smooth
over the transform associated to the estimated graph, i.e., their 2-
Dirichlet form is small [8–10]. Statistical approaches use a proba-
bilistic graphical model perspective, where an optimization problem
is solved to identify model parameters [11–13]. Both types of ap-
proaches aim at identifying a single graph from all observed data,
but they do not take into consideration the fact that relationships be-
tween data variables may be time-varying.

This paper focuses on learning a time-varying graph from spa-
tiotemporal data. There are many promising applications using time-
varying graphs: Estimation of the time-varying brain functional con-
nectivity from EEGs or fMRI [14], identification of temporal transit
of biological networks, e.g., protein, RNA, and DNA [15], and infer-
ence of relationships among companies from historical stock price
data [16], to name a few. It is often desirable for the time-varying
networks estimated in the above (and other) applications to have the
following properties:

P1 Most edges and their weights should remain unchanged over
a short-term time horizon; however, they should be allowed to
change over a longer time horizon. For example, it is reported
that time-varying graphs in fMRI and various biological net-
works follow this property [15, 17].
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P2 The graphs chosen at any given time slot should be sparse;
i.e., the number of edges should be small enough so as to
represent the relationship among data simply and effectively.

P3 Measurements should be smooth over the estimated graph.

Additionally, in many real situations, it is difficult to collect large
amounts of data under exactly the same observation conditions.
Thus, it would be desirable to have the ability to learn time-varying
graphs from a small number of measurements.

In [18], a time-varying graph learning problem is formulated
under the assumption that edge weights in the time-varying graph
change smoothly over time. The problem is formulated by us-
ing the signal smoothness term in each time slot (P3) along with
Tikhonov regularization (`2-regularization) of the temporal variation
of weighted adjacency matrices. Unfortunately, this method does
not work well in the above applications. Tikhonov regularization
promotes smooth variation of edge weights over time, i.e., it allows
changes of both edges and edge weights over short-term time hori-
zons. Experimentally, this approach tends to yield a large number
of edges in the estimated graph, which does not satisfy P1 and P2
listed above.

In this paper, we formulate a time-varying graph learning prob-
lem with the goal of learning graphs having a relatively small num-
ber of edges at all times, while also limiting fast changes to the
topology and/or the edge weights. We achieve this by introduc-
ing a constraint on sparseness of the temporal variation, i.e., the
number of nonzero elements in the difference between adjacency
matrices in neighboring time slots. Our proposed method modifies
the smoothness-based optimization approach by introducing an `1-
regularization term for the temporal variation. The main contribu-
tions of this paper are:

• A convex optimization formulation is presented to estimate
time-varying graphs with sparse temporal variations.

• The proposed method can successfully learn high-quality
time-varying graphs from a small amount of available data.

The remainder of this paper is organized as follows. We sum-
marize graph learning methods with signal smoothness in Section 2.
Section 3 introduces our spatiotemporal model, defines an optimiza-
tion problem to estimate its parameters and proposes an algorithm to
find a solution. Experimental results with synthetic data are provided
in Section 4, while conclusions are given in Section 5.

2. GRAPH LEARNING BASED ON SIGNAL SMOOTHNESS

An undirected weighted graph G = (V, E ,W) consists of a set of
nodes V , a set of edges E , and a weighted adjacency matrix W. The
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number of nodes is given by N = |V|. The graph Laplacian is given
by L = D−W, where D is the degree matrix.

Graph learning can be regarded as the problem of learning a
weighted adjacency matrix W from K samples of data available for
learning x1, . . . ,xK ∈ RN . The learned weighted adjacency matrix
has to be in the following set:

Wm =
{

W |W ∈ RN×N+ ,W = W>, diag(W) = 0
}

(1)

where R+ is the set of nonnegative real numbers.
Under the assumption that a (graph) signal is smooth over the

graph, the graph structure can be obtained by solving the following
optimization problem:

min
W∈Wm

K∑
k=1

x>k Lxk + f(W), (2)

where f(W) is a regularization function to avoid obtaining a triv-
ial solution i.e., a zero matrix. The first term of (2) quantifies the
smoothness of all observed signals over the selected graph and can
be rewritten as follows [19, 20]:

K∑
k=1

x>k Lxk =
1

2
Tr(WZ) = ‖W ◦ Z‖1, (3)

where Z is the pairwise distance matrix. Several graph learning
methods have been proposed based on this smoothness criterion [8–
10]. For example, Kalofolias [8] formulates the following optimiza-
tion problem:

min
W∈Wm

‖W ◦ Z‖1 − α1>log(W1) + β||W||2F , (4)

where 1 = [1, . . . , 1]>, ◦ is the Hadamard product, and α and β are
parameters. The second term of (4) forces the degree on each node
to be positive without preventing edge weights from becoming zero.

3. PROPOSED METHOD

In this section, we formulate our proposed time-varying graph learn-
ing problem as a convex optimization problem, and present an algo-
rithm for efficiently solving it. While we also use the smoothness
criterion of (3), in addition our formulation introduces terms that pe-
nalize temporal variations.

3.1. Problem Formulation

We define time-varying graph learning as the problem that estimates
the weighted adjacency matrices W1, . . . ,WT from spatiotempo-
ral data {X1, . . . ,XT }, where Xt = [x

(t)
1 , . . . ,x

(t)
K ] ∈ RN×K is

the tth measurement of time-varying signals in which the number of
time slots (frames) is T . Our proposed method handles this problem
by extending (4).

Our goal is to find a solution such that the temporal variation
between Wt and Wt−1 will be sparse. Based on the assumption,
we formulate the optimization problem as follows:

min
W∈Wm

T∑
t=1

f(Wt) + η

T∑
t=2

‖Wt −Wt−1‖1, (5)

where

f(Wt) = ‖Wt ◦ Zt‖1 − α1>log(Wt1) + β||Wt||2F , (6)

in which Wt and Zt denote the weighted matrix and the pairwise
matrix at a certain time frame t, respectively. The parameter η con-
trols the temporal sparseness. In this formulation, we characterize
the relation between Wt and Wt−1 by imposing the `1 norm reg-
ularization term. Though it seems similar to (4) and is convex, it
cannot be solved with the method in [8], i.e., we need a nontrivial
reformulation.

In order to make the optimization problem tractable, we rewrite
(5) and (6) in vector form. The representations of the upper-right
elements in Wt and Zt in the vector form are denoted by wt ∈
RN(N−1)/2

+ and zt ∈ RN(N−1)/2
+ , respectively.

Let w = [w>1 w>2 . . .w
>
T ]>, z = [z>1 z>2 . . . z

>
T ]>, and d =

[d>1 d>2 . . .d
>
T ]> with dt = Wt1. We also introduce the linear

operators S and Φ that satisfy Sw = d and Φw = w − ŵ where
ŵ = [w>1 w>1 w>2 . . .w

>
T−1]>, respectively. Then, we can rewrite

(5) and (6) as

min
w∈Wv

2z>w − α1>log(Sw) + β‖w‖22 + η‖Φw‖1, (7)

where

Wv =
{

w ∈ RTN(N−1)/2 | wi ≥ 0 (i = 1, 2, . . .)
}

(8)

corresponds to the nonnegative constraint. By expressing (1) in vec-
tor form, the constraints of (1) can be simplified.

3.2. Optimization

We solve (5) with a primal-dual splitting (PDS) method [21], which
can be applied to convex optimization problems written as follows:

min
w

f1(w) + f2(w) + f3(Aw), (9)

where f1 is a differentiable convex function with gradient∇f1 hav-
ing Lipschitz constant ξ, f2 and f3 are proper lower semicontinuous
convex functions that are proximable, and A is a linear operator.

Many algorithms to solve (9) have been proposed. In this pa-
per, we use a method based on a forward-backward-forward (FBF)
approach [22]. This is because the FBF-based method makes it pos-
sible to compute the proximal operators1 of functions f2 and f3 in
parallel.

We can rewrite (7) with the indicator function forWv as follows:

min
w

2z>w−α1>log(Sw)+β‖w‖22+η‖Φw‖1+ιWv (w), (10)

where the indicator function ιWv is defined by

ιWv (w) =

{
0 wi ≥ 0

∞ otherwise.
(11)

By introducing the dual variable given by v = (v>1 v>2 )>, the ob-
jective function (10) reduces to the applicable form of the PDS as
follows:

f1(w) = β‖w‖22 with ξ = 2β,

f2(w) = 2z>w + ιWv (w),

f3(v) = −α1>log(v1) + η‖v2‖1,

A =

[
S
Φ

]
.

(12)

1Let f : Rn → R ∪ {∞} be a proper lower semicontinuous convex
function. The proximal operator proxγf : Rn → Rn of f with a parameter
γ > 0 is defined by proxγf (x) = argmin

y
f(y)+ 1

2γ
‖y − x‖22. If a prox-

imal operator proxγf can be computed efficiently, the function f is called
proximable.
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The proximal operator of f2 is given by

(
proxγ(‖·‖1+ιWv )(x)

)
i

=

{
0 xi ≤ γ
xi − γ otherwise.

(13)

Since f3 is separable across variables, the proximal operator can be
computed separately for each term. The proximal operator of the log
barrier function [23] in the first term of f3 is given by

(
proxγ(−1> log(·))(x)

)
i

=
xi +

√
x2
i + 4γ

2
. (14)

In the second term, the proximal operator of the `1 norm is well
known to be the element-wise soft-thresholding operation:

(
proxγ‖·‖1(x)

)
i

=

{
0 |xi| ≤ γ
sgn(xi)(|xi| − γ) otherwise.

(15)

Finally, the detail of the proposed algorithm is summarized in Al-
gorithm 1. The computational complexity of the proposed method
is O(N2) per iteration. Since the optimization problem in the pro-
posed method is convex and lower-semicontinuous, convergence of
the algorithms is guaranteed.

Algorithm 1 Primal-dual splitting algorithm

Input: w(0),v
(0)
1 ,v

(0)
2

Output: w(i)

for i = 0 to imax do
y(i) = w(i) − γ(2βw(i) + S>v

(i)
1 + Φ>v

(i)
2 )

ȳ
(i)
1 = v

(i)
1 + γ(Sw(i))

ȳ
(i)
2 = v

(i)
2 + γ(Φw(i))

p(i) = proxγ(‖·‖1+ιWv )(y
(i))

p̄
(i)
1 = ȳ

(i)
1 − γprox 1

γ
(−1> log(·))

( ȳ(i)
1
γ

)
p̄

(i)
2 = ȳ

(i)
2 − γprox 1

γ
‖·‖1

( ȳ(i)
2
γ

)
q(i) = p(i) − γ(2βp(i) + S>p̄

(i)
1 + Φ>p̄

(i)
2 )

q̄
(i)
1 = p̄

(i)
1 + γ(Sp(i))

q̄
(i)
2 = p̄

(i)
2 + γ(Φp(i))

w(i+1) = w(i) − y(i) + q(i)

v
(i+1)
1 = v

(i)
1 − ȳ

(i)
1 + q̄

(i)
1

v
(i+1)
2 = v

(i)
2 − ȳ

(i)
2 + q̄

(i)
2

if ‖w(i+1) −w(i)‖/‖w(i)‖ < ε then
break

end if
end for

4. EXPERIMENTAL RESULTS

In this section, we present experimental results with synthetic data.
We compare the performance of our proposed method with the graph
learning methods based on signal smoothness assumption. Specifi-
cally, the proposed method (hereinafter called TVGL-Sparse: Time-
Varying Graph Learning with Sparseness of Temporal Variation) is
compared with the static graph learning with the smoothness-based
approach (SGL-Smooth) [8] and the time-varying graph learning
method with temporal smoothness (TVGL-Smooth) [18]. The tol-
erance value ε in Algorithm 1 is set to 1.0× 10−4.

4.1. Synthetic Datasets

To evaluate the performance of the proposed method, we create
two synthetic datasets generated from time-varying graphs: A time-
varying graph based on random waypoint model (abbreviated as
TV-RW graph) [24] and a time-varying Erdős–Rényi graph (abbre-
viated as TV-ER graph).

The dataset construction consists of two steps: the first step is
constructing a time-varying graph, and the second step generates
time-varying graph signals from distributions based on graph Lapla-
cians of the created time-varying graph. We describe these details
next by referring to the desired properties P1–P3 described in Sec-
tion 1.

4.1.1. Time-Varying Graph Construction

The TV-RW graph is constructed in two steps. First, we simulate the
RW model to obtain time-varying coordinates over time. The model
simulates some sensors moving around a square space with random
speed and directions. With this simulation, we obtain the position
data of each sensor at each time; this data is time-varying. We set
the number of sensors N = 36 and the motion speeds to be in the
range 0.05–0.5 (m/s). Sensor positions are sampled every 0.1 (s) for
total 300 time frames. In the second step, we construct a 3-nearest-
neighbor graph at each time from the position data. Hence, the graph
satisfies P2. These edge weights are given by

w(i, j) = exp (−dist(i, j)/(2θ)) , (16)

where dist(i, j) is the Euclidean distance between nodes i and j, and
θ is a parameter. Edge weights in this graph generally vary smoothly
as in (16); however, some edges will (dis)appear in the next time slot
due to the nature of the 3-neighborhood graph. This graph partially
satisfies P1 because the topology mostly remains unchanged while
the edge weights change smoothly over time.

TV-ER graph is constructed by varying edges in an ER graph
over time. We first construct an initial static ER graph W1 with
N = 36 and edge connection probability p = 0.05: the obtained
graph satisfies P2. The tth graph Wt is obtained by resampling 5%
of edges from the previous graph Wt−1. The weight of the edges in
this graph is randomly determined by a uniform distribution from the
interval [0, 1]. In this graph, only a few edges switch at a time while
most of the edges remain unchanged, i.e., this graph also follows P1.

4.1.2. Generating Data Samples

We create data samples from the constructed time-varying graph.
Let Lt be the graph Laplacian of a graph at a certain time slot t. A
data sample xt is generated from a Gaussian Markov random field
defined by

p(xt|L(t)) = N (xt|0, (Lt + σ2I)−1), (17)

where σ2 is the covariance of the Gaussian noise; we set σ = 0.5 in
this experiments. Pairs of variables generated from this distribution
have closer values each other when the corresponding nodes con-
nect with a larger edge weight. Hence, the data generated from this
distribution satisfies P3.

4.2. Performance Comparison

We evaluate the performance in terms of the relative error and F-
measure, each averaged over all time slots. Relative error reflects the
accuracy of edge weights on the estimated graph. The F-measure,
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(a) (b) (c) (d)

Fig. 1. The performance of time-varying graph learning for different number of data samples. (a) and (b) demonstrate the F-measure and the
relative error for the dataset based on TV-RW graph. (c) and (d) demonstrate those for TV-ER graph.

(a) Ground truth (b) SGL-Smooth (K = 1) (c) TVGL-Smooth (K = 1) (d) TVGL-Sparse (K = 1)

(e) SGL-Smooth (K = 100) (f) TVGL-Smooth (K = 100) (g) TVGL-Sparse (K = 100)

Fig. 2. The visualization of a graph at a certain time in the time-varying graph learned from the dataset based on TV-RW graph. Edge colors
represent weights of the edges.

which is the harmonic average of the precision and recall, represents
the accuracy of the estimated graph structure.

In our experiments, we set the parameter for each method to the
best one which is found by grid search. We evaluate the performance
for each method with the different number of data samples K =
{1, 5, 10, 25, 50, 100} and measure the average of the relative error
and the F-measure over all time frames.

Fig. 1 shows the performance comparisons according to the
number of the available data K. Figs. 1(a) and (b) show the average
F-measure and relative error for TV-RW graphs; Figs. 1(c) and (d)
show those for TV-ER graphs. As shown in Fig. 1, SGL-Smooth
presents the worst performance in both datasets. This is because
SGL-Smooth learns a graph from each time slot independently; it
does not consider the temporal relation of graphs. Fig. 1(a) and
1(b) also present that TVGL-Sparse outperforms TVGL-Smooth de-
spite of the fact that the edges in a TV-RW graph vary smoothly in
this case. This would be because undesirable edges are yielded by
TVGL-Smooth. TVGL-Sparse significantly outperforms the other
methods for TV-ER graphs as shown in Figs. 1(c) and (d). This indi-
cates that the sparseness constraint on the difference between graphs
in neighboring time slots works well.

It is also worth noting that, thanks to the regularization term,
TVGL-Sparse can successfully learn time-varying graphs with a rel-
atively small amount of data. As can be seen in Fig. 1, the perfor-

mance gain for TV-ER graphs is much better than that of TV-RW
graphs. This is because TV-ER graphs have all of the properties P1–
P3 while TV-RW graphs lack a part of P1, as previously mentioned.

Fig. 2 visualizes the learned TV-RW graphs. As can be seen,
SGL-Smooth and TVGL-Smooth cannot capture the original graph
structure when K = 1. In contrast, TVGL-Sparse estimated the
original structure well even for that case. When K = 100, SGL-
Smooth and TVGL-Sparse yields similar graphs while TVGL-
Smooth still yields many undesirable edges.

5. CONCLUSION

In this work, we presented the learning method of time-varying
graphs under the constraint on the sparseness of the temporal vari-
ation of edges. We demonstrated that our proposed model can
be efficiently solved using the primal-dual splitting algorithm and
successfully learn the time-varying graph, especially under the con-
dition that the number of observations is small. Our future work
includes implementing an automatic parameter tuning method and
extending the algorithm for online graph learning.
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