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ABSTRACT
We propose a graph signal processing framework to overcome
the computational burden of Tensor Robust PCA (TRPCA).
Our framework also serves as a convex alternative to graph
regularized tensor factorization methods. Our method is
based on projecting a tensor onto a lower-dimensional graph
basis and benefits from significantly smaller SVDs as com-
pared to TRPCA. Qualitative and computational experiments
on several 2D and 3D tensors reveal that for the same recon-
struction quality, our method attains up to 100 times speed-up
on a low-rank and sparse decomposition application.

Index Terms— low-rank matrix factorization, tensor low-
rank and sparse decomposition, graph signal processing

1. INTRODUCTION & RELATED WORK

Tensor Robust PCA (TRPCA) [1], [2], or low-rank and sparse
decomposition (L+S) spans a broad variety of applications
such as dynamic MRI, 3D point cloud denoising, background
separation from videos and many others. It decomposes a ten-
sor Y into sum of low-rank X and sparse tensors S = Y�X ,
by solving the following convex optimization problem:

min
X

��� vec(Y)� vec(X )
���
1
+ �

X

µ

kXµ
k⇤, (1)

where k · k1 denotes the element-wise l1 norm of the ten-
sor,

P
µ kX

µ
k⇤ denotes the tensor nuclear norm, which is the

sum of nuclear norms (sum of singular values) of the matri-
ces Xµ formed by matricizing X along the µth mode [3] and
� is a tunable regularization parameter. However, for a ten-
sor Y 2 <

n⇥n⇥n, TRPCA via iterative SVDs of 3 matrices
X 2 <

n⇥n2

[1] costs O(n4) per iteration which is unfeasible
even for n as small as 100.

Several techniques have been proposed in the past to over-
come the computational cost by sampling and randomization
[4, 5, 6] along the data dimension p. However, the problem
of large number of samples n remains unresolved.
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In a different context, i.e., to exploit inherent data struc-
ture, the notion of graph Laplacian L regularization [7] has
been extensively used in the form of low-rank tensor factor
priors [8], [9], [10], [11], [12], [13]. Tailoring these models
for L+S application, they can be written as:

min
Uµ

r ,C,X

��� vec(Y)� vec(X )
���
1
+ �

X

µ

tr(Uµ>
r L

µUµ
r )

s.t vec(X ) = (U1
r ⌦ U2

r ⌦ U3
r ) vec(C) (2)

where Uµ
r 2 <

n⇥r is the µth-mode basis, C 2 <
r⇥r⇥r is the

core tensor, where r ⌧ n, vec(·) denotes the vectorization
operation and and ⌦ denotes the matrix Kronecker product.
This model avoids the computation of expensive SVDs due to
its factorized nature but this advantage comes at the cost of
non-convexity.

To the best of our knowledge, the only effort to jointly
exploit graph structure and reduce the computation cost of
matrix L+S in a convex manner is by the authors of [14], [15].
However, their methods cannot be directly extended for ten-
sors because of computational cost of regularizer tr(XLX>)
on large matrices X .

Contributions: Our goal in this paper is to understand if
we can achieve the best of both, i.e, convexity of eq.(1) and
graph structure of eq.(2) for tensor L+S while avoiding their
corresponding shortcomings. We target this via a two-step
methodology. First we define the notion of “low-frequency
power concentration” in graph frequencies, which signifi-
cantly reduces the size of a low-rank tensor by projecting on
the graph basis. Second, we use this notion to derive from
eq.(2), a convex L+S model which enjoys graph regulariza-
tion and reduces the computation time by orders of magnitude
as compared to TRPCA (1).

Notation and Definitions: Throughout we will use the
notions of mode, matricization and multilinear rank of ten-
sors, which are well defined in [3]. We will use subscripts
r, k, k2, etc., to represent the number of columns of a ma-
trix, superscript µ to refer to the µth mode and �µ to refer
to the kronecker product of all matrices except the µth mode.
We work with 3D tensors of size n and rank r along each
mode but the analysis is valid for general dimensions. We
will also use the notion of knn-nearest neighbor graphs [7].
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A knn-graph constructed between the columns of a matrix
X 2 <

p⇥n is a tuple G = {V,E,W} where V is a set of
vertices, E a set of edges, and W : V ⇥ V ! R+ a weight
function. Each vertex vi is connected on average to knn near-
est neighbor vertices in Euclidean distance. Each entry of the
weight matrix W 2 <

|V |⇥|V |
+ is assigned via Gaussian kernel

function of the signals xi, xj on the vertices vi, vj . Through-
out, we use combinatorial Laplacian L = D � W , where D
is the degree matrix, to represent G. The eigenvector decom-
position of L is given as L = P⇤P>.

2. PROPOSED MODEL

It is a well-known fact that the graph regularization term of
the form tr(U>

r LUr) in eq.(2) ensures the smoothness of fac-
tors Ur w.r.t to the graph Laplacian. More specifically, let Pk

be the first k eigenvectors of the graph Laplacian L of the knn-
graph G, then the regularization ensures that the columns of
Ur belong to the span of Pk [14]. We show here that it is also
possible to ensure this smoothness using a specific property
of low-rank tensors, which we call as “Low Frequency Power
Concentration”. We use this property to 1) derive a computa-
tionally tractable nuclear norm regularizer from tr(U>

r LUr)
and 2) fix the basis Ur in eq.(2) to Pk to avoid updating Ur,
hence eliminating the non-convexity.

Low Frequency Power Concentration: Consider the
face low-rank tensor Y 2 <

542⇥333⇥148 as shown in Fig.1.
The singular values of all the 3 modes clearly show that
it is a low-rank tensor. We now show that the modes of
this tensor have most of their power concentrated in the top
few graph eigenvectors. We matricize the tensor Y along
mode 1 to get the matrix Y 1

2 <
542⇥(333·148) and then con-

struct a knn-graph Laplacian L1
2 <

542⇥542 between the
rows of Y 1. Next, we compute the eigenvalue decomposi-
tion of L1 = P 1⇤1P 1> and the Graph Fourier Transform
Ŷ 1 = P 1>Y 1 [7]. Finally, we compute the covariance matrix
in graph spectral domain 10 log(Ŷ 1Ŷ 1>), which shows the
power distribution across different graph frequencies. It can
be seen from the 3rd plot in Fig. 1 that most of the power
for mode 1 is concentrated in the first k ⌧ 542 graph fre-
quencies. The same holds for modes 2 and 3, as shown in
the normalized power concentration plots. We can use this
observation to state for the low-rank tensor:

vec(X ) = (P 1
k ⌦ P 2

k ⌦ P 3
k ) vec(Z), (3)

where Z 2 <
k⇥k⇥k is the low-dimensional projection of X .

We call this projection as graph core tensor (GCT). Pµ
k de-

note the first k Laplacian eigenvectors of the knn-graph Gµ

constructed between the rows of matricized tensor Y µ.
Model Derivation: Now we derive our model starting

from eq.(2). First note that using Lµ = Pµ⇤µPµ>, we can
write

P
µ tr(U

µ
r
>LµUµ

r ) =
P

µ k
p
⇤P>Urk

2
F . Using the

results from [16], which state that the Frobenius norm mini-
mization of the above form is equivalent to a weighted nuclear

norm and vec(X ) = (U1
r ⌦ U2

r ⌦ U3
r ) vec(C), we can write

eq. (2) as:

min
X

��� vec(Y)�vec(X )
���
1
+�

X

µ

���
p

⇤µPµ>XµP�µ
p

⇤�µ
���
⇤
,

where X 2 <
n⇥n2

, P�µ,⇤�µ is the Kronecker product of
the eigenvectors and eigenvalues of all modes except µ. The
weighted nuclear norm is still on the big matrix of size n⇥n2

and the weights are a function of graph eigenvalues.
Let Pµ = [Pµ

k , P̄
µ
k ], where bar denotes the set of comple-

ment graph eigenvectors. Using Pµ
k
>
P̄µ
k = 0 and the power

concentration property from eq.(3), we can reduce the size
of nuclear norm on Xµ significantly and get our proposed
model:

min
Z

��� vec(Y)� (P 1
k ⌦ P 2

k ⌦ P 3
k ) vec(Z)

���
1

+ �
X

µ

���
q
⇤µ
kZ

µ
q
⇤�µ
k2

���
⇤
. (4)

We call our proposed model Tensor Robust PCA on Graphs
(TRPCAG). Note that in contrast to eq.(1), which reduces the
rank of each mode iteratively by starting from a full-rank Y

and performing expensive SVDs, we fix the rank k ⌧ n up-
front by initializing the basis Uµ

r with Laplacian eigenvectors
Pµ
k . Then, we iteratively 1) reduce the rank from k to r and 2)

refine the basis Pµ
k to approximate Uµ

r via nuclear norm min-
imization of Z . This reduces the cost of SVD from O(n4) to
O(k4), where k ⌧ n and also makes the problem convex.

Note that TRPCAG (eq.(4)) can be easily extended for
matrices (2D tensors) as well:

min
Z

���Y � P 1
kZP�1

k

>
���
1
+ �k

q
⇤1
kZ

q
⇤�1
k k⇤. (5)

Optimization Solution: We use Parallel Proximal Split-
ting method [17] to solve this problem. First, we re-write
s0 = k vec(Y)�(P 1

k⌦P 2
k⌦P 3

k ) vec(Z)k1 = kP 1
kZ

1P�µ
k2

>
�

Y 1
��
1
,
P

µ kZ
µ
k⇤ = sµ and fµ(⇤k) =

p
⇤µ
k �

q
⇤�µ
k2 .

Let ⌦(Z, ⌧) denote the element-wise soft-thresholding
matrix operator: ⌦(Z, ⌧) = sgn(Z)max(|Z| � ⌧, 0), then
we can define Dµ(Zµ, ⌧) = A1

k⌦(R
µ, ⌧)A�µ

k2

>
, as the

singular value thresholding operator for matrix Zµ, where
Zµ = A1

kR
µA�µ

k2

>
is any singular value decomposition of

Zµ. Clearly, prox�sµ(Z
µ) = Dµ(Zµ, �), and

proxs0(Z
1) = Z1 + P 1

k
>
⇣
⌦
�
P 1
kZ

1P�µ
k2

>
� Y 1,↵�fµ(⇤k)

�

� P 1
kZ

1P�µ
k2

>
� Y 1

⌘
P�µ
k2 ,

where ↵ is the step size. These proximal operators can be
used in the Parallel Proximal Splitting Algorithm 1 to obtain
the solution to eq.(4).
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Fig. 1. Hyperspectral face tensor, its singular values, graph spectral covariance and low frequency power concentration.

Algorithm 1 Parallel Proximal Algorithm for TRPCAG

IN: Y 1, fµ(⇤k) =
p
⇤µ
k �

q
⇤�µ
k2 , �, ✏ 2 (0, 1),↵ � 0.

Z1
0,0, · · · , Z

1
0,3 2 Rk⇥k2

, all matricized along mode 1.
Set H1

0 =
P3

i=0 Z
1
0,i

for j = 1, · · · , J do
F 1
j,0 = proxs0(H

1
j ,↵)

for µ = 1, · · · , 3 do
F 1
j,µ = reshape(prox(�sµ)(H

µ
j , �(fµ(⇤k)))

end for
✏  �j  2� ✏
F 1
j =

P
µ F

1
j,µ

for µ = 0, · · · , 3 do
Z1
j+1,µ = Z1

j,µ + �j(2F 1
j �H1

j � F 1
j,µ)

end for
H1

j+1 = H1
j + �j(F 3

j �H1
j )

end for
OUTPUT: H1

j+1

Complete Algorithm: 1) Matricize the tensor Y along
each of the modes Y µ

2 <
n⇥n2

and construct a knn-graph
Gµ between the rows for each matrix. 2) Determine the first
k eigenvectors of the combinatorial graph Laplacians Lµ. 3)
Solve the optimization problem in eq. (4) using Algorithm 1.

Computational Complexity: Graph construction be-
tween the rows of a matrix of size Y µ

2 Rn⇥n2

, using
FLANN [18] scales as O(n log(n)) and the eigenvector com-
putation scales as O(nk2). Computing the prox�sµ involves
the SVD of Zµ

2 Rk⇥k2

, so it costs O(Ik4). The compu-
tation of proxs0 involves matrix multiplications and scales
as O(In3k + In2k2). Thus, the overall complexity of our
method scales as O(n log(n)+nk2+I(n3k+n2k2)), where
k ⌧ n and I is the number of iterations. The graph construc-
tion and eigenvector decomposition are performed only once
and the biggest computational cost is incurred by the matrix
multiplication O(I(n3k + n2k2)), which can be parallelized
on the GPU. This is a significant reduction as compared to
TRPCA, which scales as O(In4) and cannot be parallelized

on a GPU because it involves SVD computations.

3. EXPERIMENTAL RESULTS

We perform L+S experiments on various 2D and 3D artifi-
cial and real tensor datasets to evaluate the performance of
TRPCAG against other state-of-the-art methods such as Ten-
sor Robust PCA (TRPCA) [1], Robust PCA (RPCA) [19],
Robust PCA on Graphs (RPCAG) [20], Fast Robust PCA on
Graphs (FRPCAG) [21] and Compressive PCA (CPCA) [15].
We study both the qualitative and computational gains, where
the qualitative study involves the visual quality and recon-
struction error of recovered low-rank datasets. The details of
the datasets used in various experiments, the purpose of ex-
periments and compared methods are summarized in Table
1. Experiments on 2D datasets use eq.(5) and those on 3D
datasets use eq.(4).

Parameters: For all the experiments, the knn graphs are
constructed from the rows of each of the flattened modes of
the tensor, using knn = 10, a Gaussian kernel for weighting
the edges and the FLANN library [18]. For a fair comparison,
all the methods are properly tuned for their hyper-parameters
and best results are reported. Since TRPCAG requires explicit
specification of the rank k for every mode of the tensor, or
the size of GCT Z 2 Rk⇥k⇥k, we use k > r, where r is
the actual rank of a given mode. Furthermore, we tune the
regularization parameter � 2 (0, 30).

Background Separation from 2D video datasets: The
1st and 2nd rows of Fig. 2 present experiments on the 2D real
video datasets obtained from an airport lobby (25344 ⇥ 900)
and shopping mall (81920⇥ 900), where every frame is vec-
torized and stacked as the columns of a matrix. The goal
is to separate the static low-rank component from the sparse
part (moving people) in the video. The results of TRPCAG
(eq.(5), Algorithm 1) are compared with RPCA, RPCAG, FR-
PCAG and CPCA (5,1) with a downsampling factor of 5 along
the frames. Clearly, TRPCAG recovers a low-rank which is
qualitatively equivalent to the other methods in a time which
is 100 times less than RPCA and RPCAG and an order of
magnitude less as compared to FRPCAG. Furthermore, TR-
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Table 1. Details of the datasets, experiments and methods used for L+S experiments in this work.

Dataset Dimension Experiment Compared Methods
Airport lobby video 2D (25344⇥ 900) quality & timing RPCA [19], RPCAG [20], FRPCAG [21], CPCA [15]
Shopping mall video 2D (81920⇥ 900) quality & timing RPCA [19], RPCAG [20], FRPCAG [21], CPCA [15]

Snowfall video 3D (1920⇥ 1080⇥ 500) 1.5GB timing TRPCA [1]
artificial dataset 2D (400⇥ 400 to 12800⇥ 12800) timing RPCA [19], RPCAG [20], FRPCAG [21]

Fig. 2. L+S experimental results of TRPCAG on 2D video datasets.

Fig. 3. L+S decomposition on 3D video

Fig. 4. L+S decomposition timing of various methods. All
methods are tuned to give a reconstruction error of 0.01.

PCAG requires the same time as sampling-based CPCA but it
recovers a better quality low-rank structure.

Scalability of TRPCAG on 3D video: To show the scal-
ability of TRPCAG as compared to TRPCA, we recorded a
video of snow-fall at the campus and tried to separate the
snow-fall from the low-rank background via both methods.
For this 1.5GB video of dimension 1920 ⇥ 1080 ⇥ 500, TR-
PCAG (eq.(4), Algorithm 1) with core tensor size 100⇥100⇥
50, took less than 3 minutes, whereas TRPCA did not con-
verge even in 4 hours. The result obtained via TRPCAG is
visualized in the right half of the 5th row of Fig. 3.

Timing on artificial datasets: We also generated artifi-
cial square low-rank matrices of size ranging from 400⇥ 400
to 12800 ⇥ 12800 and added sparse noise with 0.1 standard
deviation on 10% of the entries. We tune all the methods to
attain a reconstruction error of 0.01 and then compare the tim-
ings in Fig. 4. For the same reconstruction quality, TRPCAG
is upto 60 times faster than RPCA and 10 times faster than
FRPCAG. Clearly, this shows the computational advantage
of using our method.

4. CONCLUSION
We propose a convex alternative to graph regularized tensor
factorization methods to overcome the computational burden
of Tensor Robust PCA (TRPCA). We make use of signifi-
cantly smaller SVDs as compared to TRPCA by projecting
the tensor onto a graph basis. Experiments on several 2D
and 3D tensors reveal that for the same reconstruction quality,
our method attains upto 100 times speed-up on low-rank and
sparse decomposition application.
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