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ABSTRACT

Lapped transforms are transform coding tools with basis functions
that overlap across blocks in order to reduce blocking artifacts. In
this work, we take the uniform line graph model interpretation of
the discrete cosine transform (DCT) and extend it to lapped trans-
forms. We first extend the conditions of perfect reconstruction and
orthogonality to lapped transforms on graphs, where different trans-
forms are allowed for different blocks. Then, with the focus on line
graphs, we design a lapped graph Fourier transform (LGFT) that has
these properties, with significantly reduced blocking artifact. Exper-
imental results show that the proposed LGFT can achieve improved
transform coding gain as compared to other existing transforms.

Index Terms— Lapped transform, graph Fourier transform,
blocking artifact, transform coding.

1. INTRODUCTION

The discrete cosine transform (DCT) is extensively used for com-
pression, partially because the DCT is a good approximation to the
statistically optimal Karhunen-Loève transform (KLT) when the
pixel data follows a high correlation model [1]. One drawback of
block transforms, such as the DCT, is that pixels in different blocks
are processed independently, so the correlation between pixels on
the boundary of two adjacent blocks cannot be captured. This of-
ten leads to the so-called blocking artifact: an artificial discontinuity
across the block boundary in the reconstructed signal. A well-known
approach that can significantly reduce blocking artifacts is based on
the design of lapped transforms [2, 3], where a transform is applied
to overlapping image regions. Designs of lapped transforms include
the lapped orthogonal transform (LOT) [4], and a pre- and post-
filtering framework [5], which has been adopted in the Daala codec
[6].

Recently, several graph Fourier transforms (GFT), also known
as graph-based transforms (GBT), have been proposed for encod-
ing particular types of pixel data. For example, the asymmetric
discrete sine transform (ADST) [7] is a GFT associated to a line
graph identical to that of the DCT, except for an added self-loop,
and has been used for encoding intra-predicted residual blocks. In
[8] several graph-based transforms have been designed for piece-
wise smooth images. Non-separable GFTs for 2D blocks can also be
defined based on grids [9] in order to capture diagonal edge orienta-
tions. However, despite the convenience that graph-based transforms
provide, similar to the block-based DCT, most existing graph-based
transforms for pixel data are applied block-wise without overlap, and
may lead to blocking artifacts. Thus, an LOT-like graph-based trans-
form that can mitigate blocking artifacts would be of practical inter-
est. To the best of our knowledge, lapped transforms have not been
studied in the context of graph signal processing.

In this work, we extend the notion of lapped transform to graph
signals by proposing lapped graph Fourier transforms (LGFTs): a

Fig. 1: An example of line graph with non-uniform edge weights.

family of lapped transforms that have different basis functions for
different blocks so as to capture distinct local statistical properties
for each block, while having perfect reconstruction and orthogonal-
ity properties. The conventional LOT can be seen to provide near
optimal transform coding gain for signals with a uniform line graph
model, while our proposed LGFT is a generalization of the LOT that
considers more general graph-based models. The LGFT matrix for
each block can be obtained from a Kron reduction [10] of the graph,
followed by an eigen-decomposition. We particularly focus on line
graphs with non-uniform weights (an example is shown in Fig. 1).
Such graphs can model pixel data with a smoothness prior (e.g. with
prior information of image discontinuity locations), and can be used
for encoding piecewise smooth images [8]. Hu et. al. [8] design a
block transform for data modeled by line graphs with weak edges,
e.g., different transforms would be used for blocks i + 1 and i + 2 in
Fig. 1. Instead, we develop lapped transforms, so that the output for
block i + 2 in Fig. 1 uses information from block i + 1. Our experi-
mental results show that LGFT can provide a better transform coding
gain as compared to several existing transforms. Preliminary experi-
ments on piecewise smooth images are also provided to demonstrate
a potential application of this approach.

2. PRELIMINARIES

2.1. Graph Signal Processing

We consider a weighted undirected graph G = (V,E ,W), where V
is the vertex set and E is the edge set of the graph. The entrywi,j ≥ 0
in the weight matrix W represents the weight of edge (i, j) ∈ E , and
wi,j = 0 if (i, j) ∉ E . The graph Laplacian matrix is defined as
L = D −W, where D is the diagonal degree matrix with di,i =
∑n

j=1wi,j . Based on the definition of Laplacian matrix, for a given
signal x ∈ Rn, the Laplacian quadratic form

x⊺Lx = ∑
(i,j)∈E

wi,j(xi − xj)2 (1)

measures the variation of x on the graph.
The graph Fourier transform (GFT) is an important tool in graph

signal processing [11, 12, 13]. The transform matrix U is defined
as the matrix of eigenvectors of the graph Laplacian: L = UΛU⊺.
Based on this definition, the GFT basis functions u1, . . . ,un are mu-
tually orthogonal unit norm vectors that correspond to the smallest
to the largest variations on the graph:

u1 = argmin
∥f∥=1

f⊺Lf , uk = argmin
f⊥u1,...,uk−1,∥f∥=1

f⊺Lf .
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In particular, when random signals x are modeled by a Gaussian
Markov random field (GMRF) x ∼ N (0,L†) [14] (a Gaussian ran-
dom vector whose inverse covariance is in the form of a graph Lapla-
cian), then the GFT optimally decorrelates those signals. As an
example, the DCT is the GFT of a line graph with uniform edge
weights [15], meaning that it is the optimal transform for signals
following a uniform line graph model.

2.2. Lapped Orthogonal Transforms

The lapped orthogonal transform (LOT) is a lapped transform that
has orthogonal basis functions, and is applied to a length 2M region
(two blocks of length M ). Given the block size M , the LOT matrix
is a 2M ×M matrix R = (E⊺, F⊺)⊺. If we denote x as the input
signal and y as the transform domain vector, then we can define a
transform matrix T such that y = T⊺x, and the reconstructed signal
x̂ = Ty, where

T =
⎛
⎜⎜⎜
⎝

⋱
R

R
⋱

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

⋱
⋱ E

F E
F ⋱
⋱

⎞
⎟⎟⎟⎟⎟
⎠

.

The transform R is a valid LOT if and only if TT⊺ = T⊺T = I,
meaning that x̂ = x and columns of T are orthogonal. The general
solution has the form [16]:

E = PQ, F = (I −P)Q, (2)

where P can be any symmetric projection matrix, and Q can be any
orthogonal matrix, both with size M ×M .1

Many lapped transform designs use the DCT as a key compo-
nent. One example of such a design is:

Ê = 1

2
(Ue −Uo, (Ue −Uo)Z) ,

F̂ = 1

2
(J(Ue −Uo), −J(Ue −Uo)Z) , (3)

where Ue and Uo are M ×M/2 matrices whose columns are the
length-M DCT functions even and odd symmetry, respectively. The
matrix Z is a cascade of plane rotations [4] or a product of DST-IV
and DCT-II [2], and J is the order reversal permutation matrix:

J =
⎛
⎜⎜⎜
⎝

1
1

⋰
1

⎞
⎟⎟⎟
⎠
.

Based on the fact that DCT approximates the KLT, the design in (3)
approximates the optimal solution characterized in [3]. The projec-
tion and orthogonal matrices corresponding to (3) are

P̂ = 1

2
(I −UeU

⊺
o −UoU

⊺
e), Q̂ = (Ue, −UoZ). (4)

3. LAPPED TRANSFORMS ON GRAPHS

We now propose the lapped graph Fourier transform (LGFT) by first
investigating the conditions for perfect reconstruction and orthogo-
nality, and then incorporating the graph variation (1) into the opti-
mality criterion.

1In the literature, the general solution is sometimes represented as E =
QP, F = Q(I −P). In fact, this form and (2) are interchangeable, and we
focus on (2) here as it can be extended to the graph-based design more easily.

3.1. Conditions of Perfect Reconstruction and Orthogonality

We denote a graph signal x ∈ RNM as x = (x⊺1, . . . ,x⊺N)⊺, modeled
by a GMRF:

⎛
⎜⎜⎜
⎝

x1

x2

⋮
xN

⎞
⎟⎟⎟
⎠
∼ N

⎛
⎜⎜⎜
⎝
0,L† = C =

⎛
⎜⎜⎜
⎝

C1,1 C1,2 ⋯ C1,N

C2,1 C2,2 ⋯ C2,N

⋮ ⋮ ⋱ ⋮
CN,1 CN,2 ⋯ CN,N

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠
,

where (x⊺k,x⊺k+1)⊺ corresponds to the k-th and (k + 1)-th blocks,
and Cp,q is the (p, q)-thM ×M block component of the covariance
matrix C. Unlike the conventional LOTs, where a common model
is used for all blocks, here we consider different models for different
blocks, such as a line graph model with non-uniform weights, where
Ck,k are different for different k. Under this assumption, we revisit
the conditions of perfect reconstruction and orthogonality. First, we
define a lapped transform matrix Rk = (E⊺

k,F
⊺
k)⊺ for the k-th and

(k + 1)-th blocks (x⊺k,x⊺k+1)⊺, where Rk’s are different in order to
capture distinct statistical properties for different blocks. Based on
this definition, the overall transform matrix TLGFT is

TLGFT =
⎛
⎜⎜⎜
⎝

⋱
Rk

Rk+1

⋱

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜⎜⎜
⎝

⋱
Ek

Fk Ek+1

Fk+1

⋱

⎞
⎟⎟⎟⎟⎟
⎠

.

Then, we obtain the output signal y = (y⊺1 , . . . ,y⊺N)⊺ and the recon-
structed signal x̂ = (x̂⊺1, . . . , x̂⊺N)⊺ with

yk = E⊺
kxk +F⊺

kxk+1,

x̂k = Fk−1yk−1 +Ekyk

= (EkE⊺
k +Fk−1F

⊺
k−1)xk +Fk−1E

⊺
k−1xk−1 +EkF⊺

kxk+1.

By comparing xk and x̂k, we obtain the conditions for perfect re-
construction and aliasing cancellation. In addition, the orthogonality
constraint, R⊺

kRk = I, is equivalent to E⊺
kEk +F⊺

kFk = I. Thus, for
each k, the desired transform would satisfy

EkE⊺
k +Fk−1F

⊺
k−1 = I, (Perfect reconstruction) (5)

EkF⊺
k = FkE⊺

k = 0, (Aliasing cancellation) (6)

E⊺
kEk +F⊺

kFk = I. (Orthogonality) (7)

Due to the highly nonlinear nature of these constraints as well
as the large number of degrees of freedom in designing Ek and Fk,
we propose a LGFT construction that generalizes the LOT solution
of (2). We select

Ek = PQk, Fk = (I −P)Qk, (8)

where the projection matrix P is common for all k so that (5) can
be satisfied. Based on (8), one can verify that (5)-(7) are always
satisfied as long as P is a symmetric projection matrix and Qk are
orthogonal matrices. Thus, (8) is a sufficient condition of perfect
reconstruction and orthogonality for LGFT.

3.2. Proposed LGFT Construction

An optimality criterion for the conventional LOT based on the trans-
form coding gain can be defined as [2, 17]:

GTC =
1
M ∑

M
i=1 σ

2
k,i

(∏M
i=1 σ

2
k,i)

1/M
, (9)
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where σ2
k,i = Var(yk(i)) is the variance of the i-th transform coef-

ficient in block k. With x ∼ N (0,C), σ2
k,i is the (i, i) entry of

E[yky⊺k] = (E
F
)
⊺

( Ck,k Ck,k+1

Ck+1,k Ck+1,k+1
)(E

F
) (10)

= Q⊺ ( P
I −P

)
⊺

( Ck,k Ck,k+1

Ck+1,k Ck+1,k+1
)( P

I −P
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Gk

Q. (11)

It has been shown [2] that, for a fixed P, the optimal Q that maxi-
mizes GTC is the eigenmatrix of Gk. In the data model considered
in conventional LOT, Gk = G is common for all k. In (2), Z is typ-
ically chosen as an orthogonal transform with fast implementation
such that Q̂ approximates the eigenmatrix of G.

Here, we extend the LOT design problem to LGFT design as
follows. Let the signal x ∼ N (0,C = L†) be a GMRF, where L is a
graph Laplacian corresponding to graph G and Ck,k can be different
for different k. Note that (x⊺k,x⊺k+1)⊺ is also a GMRF with length
2M :

( xk

xk+1
) ∼ N (0,L†

Sk
) , LSk ∶= ( Ck,k Ck,k+1

Ck+1,k Ck+1,k+1
)

†

.

The matrix LSk is a Laplacian obtained by Kron reduction [10] of
the graph nodes VSk = {(k−1)M+1, . . . , (k+1)M} corresponding
to blocks k and k + 1. In general, the Kron reduction of a subset of
graph nodes VS ∈ V can be expressed as

LS = LS,S′L
−1
S′,S′LS′,S , VS′ = V/VS .

As in (10), we consider (8) and replace the block components
of C by LSk . With the assumption that LSk can be different for
different k, we would like to choose Qk that diagonalizes

Hk ∶= ( P
I −P

)
⊺

LSk ( P
I −P

) . (12)

In particular, if L corresponds to a line graph, then the Kron reduc-
tion LSk is the Laplacian of the line graph segment of G with nodes
VSk . Thus, the LGFT matrix Rk of a line graph with n = NM can
be designed based on the k-th line graph segment with length 2M .

While the choice of Qk is straightforward with a given P, find-
ing P for global optimal solution in term of transform coding gain,
even in conventional LOT design, is a challenging problem [4]. Fol-
lowing the LOT design, we adopt the matrix P̂ in (4) associated
to (3). With this choice of P, this LGFT design can be regarded
as a generalization of the LOT, where Rk reduces to LOT when
Qk = (Ue, −UoZ).

To summarize, given a line graph G with Laplacian L and block
size M , the proposed LGFT can be constructed as follows:

1. Pick P as in (4).

2. Pick Qk for each k as the eigenmatrix of the Hk in (12).

3. Obtain LGFT components as given in (8).

Similar to the LOT that achieves nearly optimal GTC when L is
associated to a uniform line graph, the proposed LGFT construction,
based on a fixed P = P̂, can approximately optimize GTC when the
line graph has non-uniform weights.

4 8 16
M

1.45

1.5

1.55

1.6

1.65

1.7

1.75

T
ra

n
s
fo

rm
 c

o
d
in

g
 g

a
in

LOT
LGFT
KLT
GFT
DCT

Fig. 2: Transform coding gains for different transforms and block
sizes M with signals modeled by a particular line graph. The KLT,
GFT, and DCT shown here are defined in a block-based manner.

4. EXPERIMENTAL RESULTS

We evaluate the proposed LGFT on a class of line graphs, where
some edges have weights ε that characterize weak correlations, and
other edges have weights 1. This line graph model has been used for
encoding intra-predicted images [18] and piecewise smooth images
[8, 19].

4.1. Transform Coding Gain with a Particular Line Graph

First, we consider a line graph with length n = 400 and ε = 0.05,
where weak weights are located at edges (h,h + 1) with h ∈
{15,30,45,60, . . . ,390}. A covariance matrix C = (L + 0.2I)−1
is used in this experiment to avoid the matrix singularity issue. We
compare the transform coding gains with LOT, LGFT, DCT, KLT,
and GFT, where the three latter transforms are designed and applied
in a non-overlapping block-based manner. The implementation of
LOT follows from (3), where Z is composed of a DCT-II and a
DST-IV, as suggested in [3]. For each transform, block sizes of
M = 4, 8, and 16 are considered.

In Fig. 2 we show the transform size versus the transform cod-
ing gain GTC . For this model N (0,C), GTC is upper-bounded
by 1.736, derived from the length-n KLT of the overall model. We
can see that the LGFT yields the highest gain for all block sizes in-
cluded in this experiment. For some block sizes larger than M = 16,
the transform coding gains with the block-based KLT and GFT are
higher than that of the LGFT since there are fewer block boundaries.
In practical coding scenarios, additional information such as the po-
sitions of weak edges may be required as bit rate overhead. This has
not been considered in the analysis here.

We show the LGFT basis functions R2 with M = 8 in Fig. 3.
Note that R2 is designed for the blocks (x⊺2, x⊺3)⊺ with nodes 9 to
24. The associated model to these blocks is the line graph segment
with length 16 as shown in Fig. 1, where a weak edge (15,16) lies
between the 7th and 8th nodes. We can observe in most basis func-
tions a discontinuity between entries 7 and 8 that corresponds to the
lower correlation, showing that the LGFT basis can capture the local
weak correlation in the graph topology through different choices of
Qk.

4.2. LGFT for Image Coding

In the second experiment, we apply an LGFT to image coding.
A 480×640 piecewise smooth image from the Tsukuba dataset
[20] is used for this experiment. For demonstration and compari-
son purpose, we apply different transforms (LGFT, LOT, DCT, and
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Fig. 3: Basis functions of the LGFT for k = 2 with M = 8.

QP PSNR (dB)
LGFT LOT GFT DCT

25 48.24 48.12 48.63 48.38
30 44.84 44.74 45.11 44.93
35 41.94 41.83 42.11 41.91
40 37.74 37.73 37.69 37.62
45 33.15 33.15 33.09 33.06

Table 1: Quality comparison of different horizontal transforms on
full test image.

GFT) horizontally, then a common transform (block-based DCT)
vertically. We quantize the coefficients and apply inverse horizontal
transforms and vertical block-based DCT to reconstruct the signal.
To define the line graphs for LGFT and GFT, we apply a Sobel edge
detector [21] to obtain an edge map. For each image row we define
a line graph based on image discontinuity information in the Sobel
edge map: an edge weight of the line graph is ε = 0.7 if any of the
two corresponding pixels is an edge point in the Sobel map. We use
a block size M = 8, and quantization parameters (QP) ranging from
25 to 45, corresponding to quantization factors 2(QP−4)/6. Note that,
in practical image coding scheme, the edge location can be trans-
mitted as side information to the decoder for unique decodability. In
this experiment, we only compare the distortion but not the number
of bits required for encoding. This means that we can fairly compare
LGFT with GFT, but not with DCT and LOT, which do not require
side information.

Table 1 shows the peak-signal-to-noise ratio (PSNR) of differ-
ent transforms with different QPs. We note that, similar to the GFT
that provides a higher PSNR than the DCT, the LGFT gives a higher
PSNR than LOT for almost all QPs. This gain results from the fact
that the line graph model, which LGFT and GFT are based on, can

(a) Full Image

(b) Original (c) Edge map

(d) LGFT (PSNR=42.27dB) (e) LOT (PSNR=42.14dB)

(f) GFT (PSNR=42.57dB) (g) DCT (PSNR=42.33dB)

Fig. 4: Subjective comparison different transforms with QP=30. (a)
The full piecewise smooth image and a 160×60 patch. (b) Original
image patch. (c) Sobel edge map. (d)-(f) Recovered image patches
with different transforms.

better capture the discontinuities in the image signal. In Fig. 4 we
show the original image, the Sobel edge map, and the reconstructed
images using different transforms with QP=30. With this quanti-
zation level, while LGFT does not give higher PSNRs than GFT,
it yields reduced blocking artifacts (reduced image discontinuities
along horizontal direction) as compared to the GFT.

5. CONCLUSION

In this work, we focus on the design of lapped transforms on line
graphs with non-uniform weights. In particular, we derive the condi-
tions for perfect reconstruction and orthogonality of the lapped graph
Fourier transform (LGFT), which is more general than the lapped or-
thogonal transform (LOT). Then, we propose a design of LGFT on
an arbitrary line graph, where different transform functions are ap-
plied to different blocks to adapt to different local statistical proper-
ties. Experimental results show that on a nonuniform line graph, the
LGFT can achieve a better energy compaction than the block-based
graph Fourier transform and a conventional LOT in terms of trans-
form coding gain. The extensions to different lengths of overlap and
to graphs with more general topologies, as well as fast implementa-
tions of the LGFT, will be explored in future work.
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