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ABSTRACT

Graph sampling with noise is a fundamental problem in graph signal

processing (GSP). Previous works assume an unbiased least square

(LS) signal reconstruction scheme and select samples greedily vi-

a expensive extreme eigenvector computation. A popular biased

scheme using graph Laplacian regularization (GLR) solves a system

of linear equations for its reconstruction. Assuming this GLR-based

scheme, we propose a reconstruction-cognizant sampling strategy to

maximize the numerical stability of the linear system—i.e., mini-

mize the condition number of the coefficient matrix. Specifically,

we maximize the eigenvalue lower bounds of the matrix, represented

by left-ends of Gershgorin discs of the coefficient matrix. To accom-

plish this efficiently, we propose an iterative algorithm to traverse the

graph nodes via Breadth First Search (BFS) and align the left-ends of

all corresponding Gershgorin discs at lower-bound threshold T us-

ing two basic operations: disc shifting and scaling. We then perform

binary search to maximize T given a sample budget K. Experiments

on real graph data show that the proposed algorithm can effectively

promote large eigenvalue lower bounds, and the reconstruction MSE

is the same or smaller than existing sampling methods for different

budget K at much lower complexity.

Index Terms— Graph sampling, graph Laplacian regulariza-

tion, Gershgorin circle theorem

1. INTRODUCTION

Graph sampling is a basic problem in Graph Signal Processing

(GSP) [1–3]. While the noiseless sampling case is extensively s-

tudied [4–10], the “sampling with noise” case remains challenging.

Previous works typically assume an unbiased least square (LS)

signal reconstruction scheme from sparse samples [7, 9, 11], which

leads to a minimum mean square error (MMSE) formulation and the

known A-optimality criterion for independent additive noise [12].

The criterion is minimized greedily per sample using schemes that

compute extreme eigenvectors [7, 9], which is not scalable for large

graphs. ( [11] does not compute eigenvectors, but computes many

matrix-vector multiplications for good approximation.)

Instead of unbiased LS reconstruction, recent biased graph

signal restoration schemes employ signal priors, including graph

Laplacian regularization (GLR) [13, 14] and graph total varia-

tion (GTV) [15–17]. In particular, biased schemes using GLR

solve a system of linear equations for signal reconstruction via fast

numerical methods like conjugate gradient (CG) [18]. In this pa-

per, assuming a GLR signal reconstruction scheme, we propose

a reconstruction-cognizant sampling strategy to maximize the nu-

merical stability of the linear system—i.e., minimize the condition

number (ratio of the largest to smallest eigenvalues) of the coefficient

matrix. By coupling the GLR reconstruction method to sampling

during optimization, we expect a better-performing sample set that

yields higher quality when the sampling and reconstruction schemes

are deployed in tandem.

Computing the extreme eigenvalues of a large matrix directly

is expensive, using prevalent methods such as implicitly restarted

Arnoldi method [19] or the Krylov-Schur algorithm [20]. Instead,

we maximize the minimum of all eigenvalue lower bounds of the

matrix, where each bound is represented by the left-end of a Ger-

shgorin disc of the coefficient matrix [21]. We introduce two basic

operations to manipulate a Gershgorin disc: disc shifting via sam-

pling, and disc scaling via similarity transform. We design a Breadth

First Iterative Sampling (BFIS) algorithm to traverse all nodes via

Breath First Search (BFS), and align the left-ends of all discs to a

lower bound threshold T . We then perform binary search (BS) to

maximize T given a sampling budget K. Note that unlike existing

greedy sampling schemes [6–9], our scheme never explicitly com-

putes extreme eigenvectors, and thus can scale gracefully to very

large graphs. Experiments on both illustrative examples and real

graph data demonstrate that our proposed BS-BFIS algorithm pro-

motes large eigenvalue lower bounds, and the reconstruction MSE

is the same or smaller than existing sampling methods [6, 8, 11] for

different budget K.

2. PRELIMINARIES

We define a graph G as a triplet G(V, E ,W), where V and E repre-

sent sets of N nodes and M edges in the graph, respectively. As-

sociated with each edge (i, j) ∈ E is a weight wi,j , which reflects

the correlation or similarity between two nodes i and j. We assume

a connected undirected graph; i.e., wi,j = wj,i, ∀i, j ∈ V . W is

an adjacency matrix with wi,j as the (i, j)-th entry of the matrix.

Typically, wi,j > 0 for ∀(i, j) ∈ E , and wi,j = 0 otherwise.

Given W, the combinatorial graph Laplacian matrix L is com-

puted as [2]:

L , D−W (1)

where D = diag(W1) is a diagonal degree matrix. 1 is a vector of

all 1’s and diag(·) is an operator that returns a diagonal matrix with

the elements of an input vector on the main diagonal.

Graph Laplacian regularizer (GLR) [13] is a smoothness pri-

or for signals on graphs, which has demonstrated its effectiveness

in numerous applications, such as semi-supervised learning [22,23],

image processing [3, 13, 14] and computer graphics [24]. Given ob-

servation y on a graph G, one can formulate an optimization for the

target signal x̂ ∈ R
N using GLR as follows:

x̂ = argmin
x

‖Hx− y‖22 + µ x
⊤
Lx (2)

where H represents a signal degradation process. µ is a tradeoff

parameter to balance GLR against the l2-norm data fidelity term.
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In this work, we focus on signal reconstruction from sparse sam-

ples. The observation model for signal samples can be modeled lin-

early as follows [4–11]:

y = Hx+ n (3)

where H ∈ R
K×N is a sampling matrix [11]. x ∈ R

N is an original

graph signal, and y ∈ R
K , 0 < K < N , is a sampled signal of

dimension K corrupted by additive noise n.

Since objective (2) is quadratic, the optimal solution can be ob-

tained by solving a system of linear equations:

(H⊤
H+ µL)x = H

⊤
y. (4)

Because both H⊤H and L are singular matrices, (4) can potentially

be poorly conditioned. From this observation, we next study the

impact of sampling on the numerical stability of (4) and propose a

reconstruction-cognizant sampling strategy.

3. RECONSTRUCTION-COGNIZANT SAMPLING

3.1. Graph Sampling and Reconstruction Stability

Reconstructing a sampled signal with GLR leads to solving a linear

equation (4). Denote by a diagonal matrix A = H⊤H ∈ R
N×N

satisfying

ai,i =

{

1, i ∈ Φ,

0, otherwise.
(5)

where Φ is a set of indices of sampled nodes. Denote by B = A +
µL. From Gershgorin Circle Theorem (GCT)1, each eigenvalue λ of

B lies within one Gershgorin disc Ψi(bi,i, Ri) with disc center bi,i
and radius Ri, i.e.,

bi,i −Ri ≤ λ ≤ bi,i +Ri, (6)

where Ri =
∑

j 6=i
|bi,j | = µ

∑

j
wi,j = µdi, and di is the degree

of node i. The second equation is true since there are no self-loops

in G. Center of disc i is bi,i = µdi + ai,i.

The upper bound of all eigenvalues can be computed as:

max
i
{bi,i +Ri} = max

i
{ai,i + 2µdi} ≤ 1 + 2µmax

i
di. (7)

For a sparse graph with maximum degree dmax for each node, the

eigenvalue upper bound is 1 + 2µdmax, which is not large.

The lower bound of all eigenvalues is computed as:

min
i
{bi,i −Ri} = min

i
ai,i = 0. (8)

In words, for each unsampled node, its Gershgorin disc in B has

left-end at 0—an eigenvalue lower bound at 0. Thus the minimum

eigenvalue λmin of B can also be close to the 0 lower bound, severe-

ly magnifying the condition number λmax/λmin of B, and resulting

in a poorly-conditioned signal reconstruction using (4). The extreme

case is when no nodes are sampled, i.e., B = µL, and λmin = 0.

Ideally then, we would shift all Gershgorin discs right to maximize

the minimum eigenvalue lower bounds.

Via GCT, we see that we can estimate the degree of numerical

instability of GLR signal reconstruction without computing actual

eigenvalues, by examining left-ends of Gershgorin discs. We next in-

troduce two operations to manipulate Gershgorin discs, which leads

to a sampling algorithm to maximize the lower-bounds of λmin.

1https://en.wikipedia.org/wiki/Gershgorin circle theorem

3.2. Graph Sampling to Maximize Lower-bounds of λmin

We first state the following linear algebra fact without proof, which

we use to enable scaling of Gershgorin discs.

Fact 1: Similarity transform S of a square matrix B to C, defined as

C = SBS
−1, (9)

preserves the eigenvalues of B, assuming S is a nonsingular matrix.

Using Fact 1, we will employ a diagonal S to scale Gershgorin

discs of B, so that left-ends of Gershgorin discs of resulting trans-

formed C are moved right, maximizing lower bounds of λmin. By

scaling each disc Ψi to move its left-end bi,i −Ri to the right with-

out affecting eigenvalues of B, we are tightening one lower bound

for λmin of B per scaling operation, which helps us make more in-

formed sampling decisions for other nodes j 6= i.

3.2.1. Breadth First Iterative Sampling

We introduce two basic operations to manipulate Gershgorin discs.

The first operation is disc shifting via sampling. As discussed, the

left-end bi,i −Ri = ai,i of the i-th Gershgorin disc Ψi in matrix B

shifts from 0 to 1 when node i is sampled.

The second operation is disc scaling via similarity transform.

We specify the i-th diagonal term si of S in (9)—and its correspond-

ing element s−1

i in S−1—to scale the radius Ri of Ψi and the radii

of its neighbors’ discs Ψj , where j ∈ Ni = {j | wi,j > 0}. For

example, if we expand Ri using scalar si > 1, then we also shrink

its neighbors’ discs with s−1

i < 1. Since si is always offset by s−1

i

on the main diagonal, the center bi,i of disc Ψi is unchanged.

Given graph G and an eigenvalue lower-bound threshold T ,

where T < 1, we apply disc shifting and scaling operations iter-

atively to align discs’ left-ends at T . The algorithm is as follows.

First, we sample a chosen node i (thus moving the corresponding

disc Ψi’s center bi,i from µdi to 1+µdi, and Ψi’s left-end ai,i from

0 to 1). Then we apply scalar si to expand Ψi’s radius Ri and align

its left-end at exactly T . Scalar si must hence satisfy

ai,i + µ



di − si ·
∑

j∈Ni

wi,j

sj



 = T, (10)

where initially sj = 1 for j 6= i. Solving for si in (10), we get

si =
ai,i + µdi − T

µ
∑

j∈Ni

wi,j

sj

. (11)

Using scalar si means we also shrink node i’s neighbors’ discs

Ψj’s radii due to s−1

i . Specifically, left-end bj,j −Rj of a neighbor

j’s disc Ψj (aj,j = 0) is now:

bj,j−Rj = aj,j+µ



dj − sj ·
∑

k∈Nj\{i}

wj,k

sk
− sj ·

wj,i

si



 (12)

If a neighboring disc Ψj’s left-end is larger than T , then we need

not sample node j and instead expand its radius to align its left-end

at T using (11). This shrinks the discs of node j’s neighbors, and so

on. sj decreases with hops away from the sampled node.

If the left-end of Ψj is smaller than T , then we sample this node

(aj,j = 1) and select scalar sj using (11) again, and the process

repeats. Since we always expand a current disc (si > 1) leading to

shrinking of neighboring discs (si
−1 < 1) in each step, the left-end
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Algorithm 1 Breadth First Iterative Sampling

Input: Graph G, lower-bound T , the start node i and µ.

1: Initialize D = diag(W1) and S = diag(1).
2: Initialize A = zeros(N,N), N = |V|.
3: Initialize an empty setQ for enqueued nodes.

4: Initialize an empty queue.

5: Enqueue(queue, i) andQ ← Q∪ {i}.
6: while queue is not empty do

7: k ←Dequeue(queue).

8: Update sk using (11).

9: if sk < 1 do

10: Sampling node k by setting ak,k = 1.

11: Update sk using (11).

12: endif

13: for t in k’s neighboursN (k) do

14: if t /∈ Q do

15: Enqueue(queue, t) andQ ← Q∪ {t}.
16: endif

17: endfor

18: endwhile

Output: Sampling matrix A.

Fig. 1: An illustrative example of a 4-node line graph.

of each scaled node remains larger than or equal to lower-bound T .

We traverse all the nodes using Breadth First Search (BFS). Thus,

we name our proposed algorithm Breadth First Iterative Sampling

(BFIS). The BFIS is sketched in Algorithm 1.

3.2.2. Illustrative Example

We use a simple example to illustrate how BFIS works. We assume

a four-node graph as shown in Fig. 1. We start by sampling node

3. Assuming µ = 1, the graph’s coefficient matrix B with (3, 3)-th
entry updated is shown in Fig. 2a. Correspondingly, left-end of node

3’s Gershgorin disc—red dots and blue arrows represent disc centers

and radii respectively—shifts from 0 to 1, as shown in Fig. 2d.

We next perform disc scaling on sampled node 3. As shown in

Fig. 2b, scalar s3 is applied to the third row of B, and thus the radius

of disc Ψ3 is expanded by s3 where s3 > 1. Simultaneously, scalar

s−1

3
is applied to the third column, and thus the radii of discs Ψ2

and Ψ4 are shrunk due to the scaling of w2,3 and w4,3 by s−1

3
. Note

that the (3, 3)-th entry of B (and Ψ3’s disc center) is unchanged,

since scalar s3 is offset by s−1

3
. We see that by expanding the disc

of sampled node 3, the left-ends of discs of its neighboring nodes

(nodes 2 and 4) shift beyond threshold T , as shown in Fig. 2e.

We next apply scalar s2 to disc Ψ2 to expand its radius by s2,

where s3 > s2 > 1, and the radii of discs Ψ1 and Ψ3 are shrunk due

to the scaling of w1,2 and w3,2 by s−1

2
, as shown in Fig. 2c. s2 must

be smaller than s3 for the left-end of Ψ2 not to move past 0. The

discs are shown in Fig. 2f. Subsequently, similar disc operations can

be performed on Ψ1 and Ψ4. Finally, the left-ends of all discs move

beyond threshold T .

3.2.3. Binary Search with BFIS

Given a sample budget K, we perform binary search to maximize the

lower-bound threshold T . We call the algorithm Binary Search with

(a) (b) (c)

(d) (e) (f)

Fig. 2: An illustration of BFIS. (a) sampling node 3. (b) scaling node

3. (c) scaling nodes 2 and 3. (d) Discs after sampling node 3. (e)

Discs after scaling node 3. (f) Discs after scaling nodes 2 and 3.

Algorithm 2 Binary Search with BFIS

Input: Graph G, sample size K, numerical precision ǫ, the start

node i and weight parameter µ.

1: Initialize left = 0, right = 1.

2: while right− left > ǫ do

3: T ← (left+ right)/2.

4: A← BFIS(G, T, i, µ).
5: m← the number of nodes sampled in A.

6: if m > K do

7: right← T
8: else

9: left← T
10: endif

11: endwhile

12: T̂ ← left.
13: A← BFIS(G, T̂ , i).

Output: Sampling matrix A, maximum lower-bound T̂ .

BFIS (BS-BFIS), as outlined in Algorithm 2. At each iteration, if the

number of sampled nodes in A output from BFIS is larger than K,

then threshold T is set too large, and we update right to reduce T .

On the other hand, if the number of sampled nodes is smaller than or

equal to K, then threshold T may be too small, and we update left
to increase T . When right− left ≤ ǫ, BS-BFIS converges and we

find the maximum lower bound T̂ with numerical error lower than ǫ.
We run BFIS again with T̂ to compute the K sampled nodes.

Because the proposed BFIS executes BFS once on a graph G, the

time complexity of BFIS is O(|V|+|E|). In order to achieve numeri-

cal precision ǫ in BS-BFIS, we need to employ BFIS O(log 1

ǫ
) times.

Thus, the time complexity for BS-BFIS is O
(

(|V|+ |E|) log 1

ǫ

)

.

4. EXPERIMENTS

4.1. Experimental Setting

We apply the proposed sampling algorithm on both an illustrative

line graph and a real U.S. Climate Normals database [25]. We com-

pare with several existing graph sampling methods: E-optimal [6],
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Fig. 3: Sampling on an unweighted line graph, |V| = 21. (a) Sam-

pling 5 nodes, lower-bound T = 0.048. (b) Sampling 7 nodes,

lower-bound T = 0.107.
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Fig. 4: (a) Comparisons among lower-bound T and the correspond-

ing λT
min via BS-BFIS, and mean λR

min via 100 times random sam-

pling. (b) Reconstruction MSE comparisons among E-optimal [6],

Spectral proxies [8], MIA [11] and BS-BFIS.

spectral proxies [8], and MIA [11]. All algorithms are implemented

and run on Matlab R2015a platform.

To run BS-BFIS algorithm, there are three parameters we need

to set besides graph G and sample size K, i.e., numerical precision ǫ,
the start node i and tradeoff parameter µ. In experiments, we set the

numerical precision ǫ = 10−4. Because BS-BFIS employs BFS to

visit all the graph nodes, the start node i determines the visiting order

and affects the performance of BS-BFIS, especially when K ≪ N .

To demonstrate the best performance of BS-BFIS, we choose the

start node i that leads to the largest T̂ via brute-force search. For the

sake of speed, the start node i can be chosen randomly in practice. In

experiments, we set the tradeoff parameter µ in (10) and (4) to 0.01
for signal reconstruction.

For experiments on real data, we build a graph on real U.S. Cli-

mate Normals database [25]. We select 100 temperature stations

close to cities with 100 largest populations as graph nodes. The

graph edges are connected with Delaunay Triangulation2, and the

graph weights are computed using wij = exp(−‖li − lj‖
2

2/σ
2

l ) ·
exp(−‖xi − xj‖

2

2/σ
2

x) like bilateral filter [26], where li and xi are

the geometric location and the temperature of station i, respectively.

σl = 5 and σx = 3. In our experiments, we sample the temper-

atures of K stations with simulated additive Gaussian noise of unit

variance. Then, we reconstruct temperatures of all stations by solv-

ing linear equation (4).

4.2. Experimental Results

In Fig. 3, we conduct an illustrative experiment to perform sampling

on an unweighted line graph of 21 nodes. We sample 5 and 7 n-

odes, respectively. Fig. 3a and Fig. 3b report the scale factor si for

each disc and the distribution of sampled nodes. Using BS-BFIS,

we observe periodic uniform sampling for different sampling bud-

gets, which agrees with our intuition.

We also apply BS-BFIS on a graph built on real U.S. Climate

2https://en.wikipedia.org/wiki/Delaunay triangulation
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Fig. 5: Sampling visualization (K = 25). Solid circles are sampled

nodes. Color depicts the temperature. The running time of E-optimal

[6], Spectral proxy [8], MIA [11] and BS-BFIS is 0.103s, 1.440s,

0.108s and 0.082s, respectively.

Normals database [25]. Our objective is to maximize the lower-

bound of minimum eigenvalue λmin. We apply BS-BFIS on the

constructed graph G to compute the lower-bound threshold T̂ and

sampling matrix A with increasing sample budget K. With out-

put A, we compute λT
min via eigen-decomposition. For compari-

son, we employ random sampling 100 times and compute the mean

minimum eigenvalue λR
min. As shown in Fig. 4a, BS-BFIS can pro-

mote large lower-bound threshold T with increasing sample budget

K, and the minimum eigenvalue λT
min increases correspondingly.

Both the lower-bound T and the corresponding λT
min increases much

faster than λR
min using random sampling.

We also compare the reconstruction MSE of BS-BFIS with ex-

isting sampling methods: E-optimal [6], spectral proxies [8], and

MIA [11], as shown in Fig. 4b. Each method outputs sampling ma-

trix A under sampling size K. With A, we can have H and solve (4)

to reconstruct the temperatures of all stations. We observe that the

performance of BS-BFIS is comparable to or better than the compet-

ing methods. In Fig. 5, we visualize the sampled nodes of the four

methods with K = 25 and show the running time, respectively. We

observe that the sampled nodes of BS-BFIS tend to distribute uni-

formly on the graph, due to BFS and disc scaling operation in BFIS.

However, sampled nodes of other methods, such as MIA [11], tend

to accumulate in several areas. This explains the good performance

of BS-BFIS. BS-BFIS is the fastest among the four algorithms.

5. CONCLUSION

To address the “graph sampling with noise” problem, in this paper

we propose a reconstruction-cognizant graph sampling scheme that

assumes a biased reconstruction based on graph Laplacian regular-

ization (GLR) and maximizes the stability of the solution’s linear

system. In particular, our proposed BS-BFIS promotes large lower-

bounds of λmin via Gershgorin disc alignment. Besides stability of

signal reconstruction, the proposed algorithm leads to same or better

reconstruction MSE against existing methods at lower complexity.

5399



6. REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-

dergheynst, “The emerging field of signal processing on graph-

s: Extending high-dimensional data analysis to networks and

other irregular domains,” in IEEE Signal Processing Maga-

zine, May 2013, vol. 30, no.3, pp. 83–98.

[2] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and

P. Vandergheynst, “Graph signal processing: Overview, chal-

lenges, and applications,” Proceedings of the IEEE, vol. 106,

no. 5, pp. 808–828, 2018.

[3] G. Cheung, E. Magli, Y. Tanaka, and M. K. Ng, “Graph spec-

tral image processing,” Proceedings of the IEEE, vol. 106, no.

5, pp. 907–930, 2018.

[4] I. Pesenson, “Sampling in Paley-Wiener spaces on combinato-

rial graphs,” Transactions of the American Mathematical Soci-

ety, vol. 360, no. 10, pp. 5603–5627, 2008.

[5] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling the-

orem for signals on arbitrary graphs,” in 2014 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2014, pp. 3864–3868.

[6] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Dis-
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