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ABSTRACT

In this paper, we study the denoising of piecewise smooth graph sig-
nals that exhibit inhomogeneous levels of smoothness over a graph.
We extend the graph trend filtering framework to a family of non-
convex regularizers that exhibit superior recovery performance over
existing convex ones. We present theoretical results in the form of
asymptotic error rates for both generic and specialized graph models.
We further present an ADMM-based algorithm to solve the proposed
optimization problem and analyze its convergence. Numerical per-
formance of the proposed framework with non-convex regularizers
on both synthetic and real-world data are presented for denoising,
support recovery, and semi-supervised classification.

Index Terms— graph signal processing, graph trend filtering,
piecewise smooth graph signals, semi-supervised classification, non-
convex penalties

1. INTRODUCTION

Signal estimation from noisy observations is a well-studied problem
in signal processing and has applications for signal inpainting, col-
laborative filtering, recommender systems and other large-scale data
completion problems. Since noise can have deleterious, cascading
effects in many downstream tasks, being able to efficiently and ac-
curately reconstruct a signal is of significant importance.

With the explosive growth of information and communication,
signals are generated at an unprecedented rate from various sources,
including social networks, citation networks, biological networks,
and physical infrastructure [1]. Unlike time-series signals or im-
ages, these signals lie on complex, irregular graph structures, and
require novel processing techniques, leading to the emerging field of
signal processing on graphs [2–4]. The associated graph-structured
data are referred to as graph signals. In graph signal processing, a
canonical assumption is that the graph signal is smooth with respect
to the graph, that is, the signal coefficients do not vary much over
local neighborhoods of the graph. However, this characterization is
insufficient for many real-world signals. There are often localized
discontinuities and patterns in the signal, and the signal is smooth
in a piecewise manner over the graph. In community detection, for
example, the label is constant within each group, but discontinuous
over the edges that connect nodes in different groups. As a result,
it is necessary to develop representations and algorithms to process
and analyze such piecewise smooth graph signals.

In this work, we study the denoising of piecewise smooth graph
signals that exhibit an inhomogeneous level of smoothness over the
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graph and have abrupt, localized discontinuities. The class of piece-
wise smooth signals, which includes piecewise constant graph sig-
nals, is complementary to the class of smooth graph signals that ex-
hibit homogeneous levels of smoothness over the graph. The recon-
struction of such smooth signals has been well studied in previous
work both within the field of graph signal processing as well as in
the context of Laplacian regularization.

The graph trend filtering (GTF) framework [5], which applies
total variation denoising on graphs [6], is a particularly flexible and
attractive approach that is based on minimizing the `1 norm of dis-
crete graph differences. In this work, we present an extension to the
GTF framework and apply a family of non-convex regularizers that
exhibit superior recovery performance over `1 norm minimization.
Although the `1 norm based regularization has many attractive prop-
erties [7], it is well-known that the estimates are biased toward zero
for large coefficients. To reduce the bias, nonconvex penalties such
as the smoothly clipped absolute deviation (SCAD) penalty [8] and
the minimax concave penalty (MCP) [9] are proposed as alternatives
with the attractive oracle property: in the asymptotic sense, they per-
form as well as the case where we know in advance the support of
the sparse vectors [10–14]. These penalties behave similarly to the
`1 norm when the signal values are small, but tend to a constant when
the signal values are large. Through theoretical analyses and empiri-
cal performance, we demonstrate the improved performance of GTF
using non-convex penalties such as SCAD and MCP in terms of both
reduced reconstruction error as well as improved support recovery,
i.e. how accurately we can localize the boundaries and discontinu-
ities of the piecewise smooth signals.

The rest of this paper is organized as follows. In Section 2, we
provide some background and definitions on graph signal process-
ing and GTF. Section 3 presents the proposed GTF framework with
non-convex penalties, its performance guarantee, and an efficient al-
gorithm based on ADMM. Numerical performances of the proposed
approach are examined on both synthetic and real-world data for de-
noising and semi-supervised classification in Section 4. Finally, we
conclude in Section 5.

2. GRAPH SIGNAL PROCESSING, PIECEWISE SMOOTH
SIGNALS, AND GRAPH TREND FILTERING

We consider an undirected graph G = (V, E ,A), where V =
{v1, . . . , vn} is the set of nodes, E = {e1, . . . , em} is the set of
edges, and A = [Aj,k] 2 Rn⇥n is the graph shift operator [2],
or the weighted adjacency matrix. The edge set E represents the
connections of the undirected graph G, and the positive edge weight
Aj,k between nodes vj and vk measures the underlying relation
between the jth and the kth node, such as a similarity, a dependency,
or a communication pattern. Let a graph signal be defined as

� =
⇥
�1,�2, . . . ,�n

⇤T 2 Rn
,
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where �i denotes the signal coefficient at the ith node.
Let � 2 Rm⇥n be the oriented incidence matrix of G, where

each row corresponds to an edge. That is, if the edge ei = (j, k) 2 E
connects the jth node to the kth node (j < k), the entries in the ith
row of � is then given as

�i,` =

8
<

:

�
p

Aj,k, ` = j;p
Aj,k, ` = k;

0, otherwise
.

The entries of the signal �� = [
p

Aj,k(�k � �j)](j,k)2E specifies
the weighted pairwise differences of the graph signal over each edge.
As a result, � can be interpreted as a graph difference operator. In
graph signal processing, a signal is called smooth over a graph G if
k��k22 =

P
(j,k)2E Aj,k(�k � �j)

2 is small.

2.1. Piecewise Smooth Graph Signals

In practice, the graph signal may not be necessarily smooth over the
entire graph, but only locally within different pieces of the graph.
To model inhomogeneous levels of smoothness over a graph, we say
that a graph signal � is piecewise constant over a graph G if many
of the differences �k��j are zero for (j, k) 2 E . Consequently, the
difference signal �� is sparse and k��k0 is small.

We can generalize this notion to characterize piecewise kth or-
der polynomial signals on a graph, where the piecewise constant case
corresponds to k = 0, by generalizing the notion of graph difference
operators. Specifically, we use the following recursive definition of
the kth order graph difference operator �(k+1) [5]. Let �(1) = �
for k = 0. For k � 1, let

�(k+1) =

(
�(1)T�(k) 2 Rn⇥n

, odd k

�(1)�(k) 2 Rm⇥n
, even k

.

The signal � is said to be a piecewise kth order polynomial
graph signal if k�(k+1)�k0 is small. To further illustrate, let us
consider the piecewise linear graph signal, corresponding to k = 1,
as a signal whose value at a node can be linearly interpolated from
the weighted average of the values at neighboring nodes. It is easy
to see that this is the same as requiring the second-order differences
�T�� to be sparse. Similarly, we say that a signal has a piecewise
quadratic structure if the differences between the second-order dif-
ferences defined for piecewise linear signals are mostly zero, that is,
if ��T�� is sparse.

2.2. Denoising Piecewise Smooth Graph Signals via GTF

Assume we observe a noisy signal y over the graph under i.i.d Gaus-
sian noise:

y = �? + ✏, ✏ ⇠ N (0,�2I), (1)

and seek to reconstruct �? from y by leveraging the graph structure.
When � is a smooth graph signal, Laplacian smoothing [15–19] can
be used, which solves the following problem:

�̂ = argmin�2Rn
1
2
ky � �k22 + �k��k22, (2)

where � > 0. However, it cannot localize abrupt changes in the
graph signal when the signal is piecewise smooth.

Graph trend filtering (GTF) [5] is a flexible framework for es-
timation on graphs that is adaptive to inhomogeneity in the level of
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Fig. 1: Illustration of ⇢(·;�, �) for `1, SCAD (� = 3.7), and MCP (� =
1.4), where � = 2.

smoothness of an observed signal across nodes. The kth order GTF
estimate is defined as:

�̂ = argmin�2Rn
1
2
ky � �k22 + �k�(k+1)�k1, (3)

which can be regarded as applying total variation or fused lasso
with the graph difference operator �(k+1) [6, 20]. The sparsity-
promoting properties of the `1 norm have been well-studied [21].
Consequently, applying the `1 penalty in GTF sets many of the
(higher-order) graph differences to zero while keeping a small frac-
tion of nonzero values such that the GTF estimate is locally adaptive
over the graph.

3. GTF WITH NON-CONVEX PENALTIES

The `1 norm penalty considered in (3) is well-known to produce
biased estimates [22], which motivates us to extend the GTF frame-
work to a broader class of sparsity-promoting regularizers that are
not necessarily convex. We wish to solve the following generalized
kth order GTF problem:

�̂ = argmin�2Rn
1
2
ky � �k22 + g(�(k+1)� ;�, �), (4)

where g(v;�, �) =
PT

t=1 ⇢(vt;�, �) for v 2 RT is a regularizer
defined as the sum of the penalty function ⇢(·;�, �) : R ! R ap-
plied on each coordinate vt of v. Similar to [10,12,23], we consider
a family of penalty functions ⇢(·;�, �) that satisfies the following
assumptions.

Assumptions 1. (a) ⇢(t;�, �) satisfies ⇢(0;�, �) = 0, is sym-
metric around 0, and is nondecreasing on the real line.

(b) For t � 0, the function t ! ⇢(t;�,�)
t is non-increasing in

t. Also, ⇢(t;�, �) is differentiable for all t 6= 0 and sub-
differentiable at t = 0, with limt!0+ ⇢

0(t;�, �) = �. This
upper bounds ⇢(t;�, �)  �|t|.

(c) There exists µ > 0 such that ⇢(t;�, �) + µ
2 t

2 is convex.

Besides the `1 penalty, the non-convex SCAD [8] penalty

⇢SCAD(t;�, �) = �

Z |t|

0

min(1,
(� � u/�)+

� � 1
)du, � � 2,

and MCP [9]

⇢MCP(t;�, �) = �

Z |t|

0

(1� u

��
)+du, � � 1
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also satisfy these assumptions, among others. We note that for
SCAD, µ � 1

��1 and for MCP, µ � 1
� . Fig. 1 illustrates the `1,

SCAD and MCP penalties for comparisons. SCAD and MCP pri-
marily differ from `1 penalty in that they apply less penalty over
large signal values, and as a result mitigate the bias effect.

3.1. Error Bounds

We present asymptotic error rates on the generalized GTF prob-
lem (4) under the noise model in (1). Furthermore, we specialize
the error rates to a few common graph models.

Theorem 1. Let C be the number of connected components in the
graph G, or equivalently, the dimension of the null space of �(k+1).
Further, let r be the number of rows of �(k+1), and ⇣ the maximum
`2 norm of the columns of �(k+1)†. Setting � = ⇥(⇣

p
log r), and

for a penalty function ⇢(·;�, �) such that µ <
1

k�(k+1)k22
,

k�̂ � �?k22
n

 O

✓
C

n

◆
+

4g(�(k+1)�?;�, �)

n(1� µk�(k+1)k22)
(5)

 O

✓
C

n

◆
+

4⇥(⇣
p
log r)k�(k+1)�?k1

n(1� µk�(k+1)k22)
. (6)

We note that error rates for GTF with a non-convex regular-
izer g(·;�, �) are at least as fast as those using the `1 regularizer.
Particularly, the rates with non-convex regularizers are faster when
there are large coefficients on which they apply less shrinkage such
that g(�(k+1)�?;�, �) ⌧ �k�(k+1)�?k1. It is shown in [5] that
⇣  1

�2(L)(k+1)/2 , where �2(L) is the smallest non-zero eigenvalue

of the graph Laplacian matrix L = �(1)T�(1) and quantifies the
algebraic connectivity of the graph [24]. Moreover, one can bound
�2(L) � 4

nD , where D is the diameter of the graph. Consequently,
we get faster rates when the graph is well-connected and has a small
diameter. We can further specialize the rates in Theorem 1 for some
representative graphs to gain further insights.

• Chain graph: For univariate trend filtering,

k�̂ � �?k22
n

= O

 r
log n
n

n
k
���(k+1)�?

��
1

!
.

• d-regular graphs and Erdős-Rényi random graphs: For d-
regular graphs as well as Erdős-Rényi random graphs with edge
probability p 2 (0, 1) such that d = np,

k�̂ � �?k22
n

= O

 p
log(nd)

nd
k+1
2

���(k+1)�?
��
1

!
.

3.2. ADMM Algorithm

We optimize the generalized GTF formulation in (4) via the alternat-
ing direction method of multipliers (ADMM) framework for solv-
ing separable optimization problems [25]. Via a change of variable
defining ⌘ = �(k+1)�, we can write the transformed problem

�̂ = argmin�2Rn
1
2
ky � �k22 + g(⌘;�, �) s.t. ⌘ = �(k+1)�

and its corresponding Lagrangian as:

L(�,⌘,u) =
1
2
ky � �k22 + g(⌘;�, �) +

⌧

2
k�(k+1)� � ⌘ + uk22

� ⌧

2
kuk22 (7)

where u is the Lagrangian multiplier, and ⌧ the parameter. Algo-
rithm 1 shows the ADMM updates based on the Lagrangian in (7).
Note that both SCAD and MCP admit closed-form proximal opera-
tors. We have the following convergence guarantee for Alg. 1.

Theorem 2. Alg. 1 converges to a local minimum if ⌧ � �⇢(·;�, �)00.

Algorithm 1 ADMM Optimization for Non-Convex GTF

1: Inputs: y,�(k+1), and parameters �, �, ⌧
2: Initialize:

D  �(k+1), ⌘  D�, u D� � ⌘,
�  y or �init if given.

3: repeat
4: �  (I + ⌧DTD)�1(⌧DT (⌘ � u) + y)
5: for i  1 to length(D�) do
6: ⌘i  prox⇢([D�]i + ui;�/⌧)
7: . prox⇢(t;↵) = proximal operator on t with ↵⇢

8: end for
9: u u+D� � ⌘

10: until termination

4. NUMERICAL EXPERIMENTS

For the following experiments, we fixed � = 3.7 for SCAD, � =
1.4 for MCP, and tuned � and ⌧

� for each experiment. To meet the
convergence criteria in Theorem 2, we enforce ⌧ � 1

� . SCAD/MCP
were warm-started with the GTF estimate with `1 penalty.

4.1. Denoising via GTF with Non-Convex Regularizers

In this experiment, we compare the performance of GTF using non-
convex regularizers such as SCAD and MCP with that using the `1

norm. For the ground truth, we construct a piecewise constant signal
on a 20 ⇥ 20 2d-grid graph and the Minnesota road graph, and add
different levels of noise as (1). We recover the signal with Alg. 1,
and plot the SNR of the reconstructed signal versus the SNR of the
input signal in Fig. 2. SCAD/MCP consistently outperforms `1 in
denoising both regular and irregular graph signals. Below we further
highlight two important advantages of non-convex regularizers.
Bias Reduction: We demonstrate the reduction in signal bias in
Fig. 3 for the graph signal defined over a 12 ⇥ 12 2d-grid graph,
using both the `1 penalty and the MCP penalty. Clearly, the MCP
estimate (orange) has less bias than the `1 estimate (blue), and can
recover the ground truth surface (purple) more closely.
Support Recovery: We illustrate the improved support recov-
ery performance of non-convex regularizers [26] on localizing the
boundaries for a piecewise constant signal on the Minnesota road
graph as in Fig. 2. We aim to classify an edge as being 1) between
two nodes in the same piece or 2) a cut edge across two pieces. By
sweeping the regularization parameter �, we obtain the ROC curve,
the true positive rate versus the false positive rate of classifying an
edge correctly, and see that MCP and SCAD consistently outperform
the `1 penalty.

4.2. Semi-Supervised Classification

Graph-based learning provides a flexible and attractive way to model
data in semi-supervised classification problems when labels are ex-
pensive to acquire [15, 16, 19], where a nearest-neighbors graph can
be constructed based on the similarity between each pair of samples.
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Fig. 2: The ground truth piecewise constant signal on 20⇥20 2d-grid graph
(top), and Minnesota road graph (bottom), and their corresponding plots of
input signal SNR versus reconstructed signal SNR, averaged over 10 and 20
repetitions, respectively.
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Fig. 3: GTF using MCP (orange) has much lower bias than GTF using `1
(blue) when estimating a piecewise constant signal over a 12⇥12 grid graph.
See highlighted regions pointed by red arrows in A and B. The scatter points
are the noisy signal with 5dB SNR.
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Fig. 4: The ROC curve for classifying an edge as on the boundaries of pieces
for the Minnesota road graph signal shown in Fig. 2. The noisy piecewise
constant signal had input SNR = 7.8dB.

We move beyond our original problem in (4) to a K-class classifica-
tion problem in a semi-supervised learning setting, where for a given
dataset with n samples, we observe a subset of the one-hot encoded
class labels, Y = [y1, . . . ,yK ] 2 Rn⇥K , such that Yi,j = 1 if ith
sample has been observed to be in jth class, and Yi,j = 0 otherwise.
A diagonal, indicator matrix M 2 Rn⇥n denotes samples whose

class labels have been observed. We also let R = [r1, . . . , rK ] 2
Rn⇥K (which set to be uniform in the experiment) be a fixed prior
belief, and ✏ > 0 determine how much emphasis to be given to
the prior belief. Then, we can define the modified absorption prob-
lem [5,16,19] using the generalized GTF framework to estimate the
unknown class probabilities B = [�1, . . . ,�K ] 2 Rn⇥K :

B̂ =argminB2Rn⇥K
1
2

KX

j=1

kM(yj � �j)k22

+
KX

j=1

g(�(k+1)�j ;�, �) + ✏

KX

j=1

krj � �jk22 (8)

The labels Ŷ can be estimated using B̂ such that Ŷi,j = 1 if and
only if j = argmax1lK B̂i,l, and otherwise Ŷi,j = 0. We ap-
plied the algorithm in (8) to the 7 most popular UCI classification
datasets [27] with ✏ = 0.01, excluding adult which had more than
30,000 samples. For each dataset, we normalized each feature to
have zero mean and unit variance, and constructed a 5NN graph of
the samples based on the Euclidean distance between their features,
with edge weights from Gaussian radial basis kernel. We randomly
assigned 20% of samples in each class to be observed initially, and
performed 10 repetitions. Table 1 shows that the misclassification
rates from using non-convex penalties such as SCAD/MCP are com-
petitive with those from `1.

heart wine-q. wine iris breast car
# of samples (n) 303 1599 178 150 569 1728
# of classes (K) 2 6 3 3 2 4

k = 0

L1 0.148 0.346 0.038 0.036 0.042 0.172
SCAD
p-value

0.148 0.353 0.038 0.033 0.042 0.149
1. 0.06 1. 0.27 1. 0.06

MCP
p-value

0.144 0.351 0.037 0.035 0.040 0.148
0.23 0.18 0.34 0.34 0.35 0.05

k = 1

L1 0.143 0.351 0.034 0.039 0.035 0.104
SCAD
p-value

0.144 0.350 0.034 0.039 0.035 0.104
0.30 0.43 0.34 1. 0.71 0.66

MCP
p-value

0.146 0.350 0.034 0.039 0.034 0.103
0.05 0.44 0.34 1. 0.02 0.23

Table 1: Misclassification rates averaged over 10 trials, with p-values from
running sampled t-tests between SCAD/MCP misclassification rates and the
corresponding rates using `1. Cases where non-convex penalties perform
better than `1 with p-value below 0.1 are highlighted in green, and where
they perform worse are in red.

5. CONCLUSIONS

We presented a framework for denoising piecewise smooth signals
on graphs that generalizes the graph trend filtering framework to a
family of non-convex regularizers. We presented theoretical guaran-
tees on the asymptotic error rates of our framework, and presented a
general algorithm to solve this generalized graph trend filtering prob-
lem. Furthermore, we demonstrated the superior performance of
these non-convex regularizers in terms of reconstruction error, bias
reduction, and support recovery on both synthetic and real-world
data. In the future, we plan to present further theoretical guarantees
on support recovery. Due to space constraints, the detailed proofs of
the presented theorems are deferred to the full version [28].
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