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ABSTRACT

Many real-world systems can be represented by networks. One com-
mon approach to characterizing the organization of networks is com-
munity detection. A lot of work has been conducted in community
detection of static networks. However, most real systems are time-
dependent and modeled by temporal networks with a structure that
evolves across time. In this paper, a low-rank approximation based
evolutionary clustering approach is introduced to detect and track the
community structure of temporal networks. The proposed approach
provides robustness to outliers and results in smoothly evolving clus-
ter assignments through joint low-rank approximation and subspace
learning. Moreover, a cost function is introduced to track changes
in the community structure across time. The performance of the
proposed approach is validated on both simulated and real temporal
networks.

Index Terms— Temporal networks, community detection, evo-
lutionary spectral clustering, low-rank approximation.

1. INTRODUCTION

Network science has contributed greatly to the modeling of complex
systems where the objects in the system and the interactions between
them can be presented by nodes and edges in a graph, respectively.
Graph-based community detection is very effective at summarizing
networks into a set of communities. The majority of the prior work in
community detection is limited to static networks [1] [2]. However,
many real systems change over time and can be modeled by temporal
networks. Consequently, it is very important to develop algorithms
to detect the community structure in temporal networks and track its
evolution across time.

Over the past decade, different algorithms have been developed
to detect the community structure in temporal networks. In particu-
lar, evolutionary clustering approaches that preserve the community
structure at the current time point and allow the structure to evolve
smoothly across time have been proposed. Some examples include
simple extensions of static clustering methods such as preserving
cluster quality (PCQ) and preserving cluster membership (PCM) [3].
In both frameworks, a cost function that consists of temporal and
snapshot terms is used to guarantee temporal smoothness. However,
this cost function requires a priori knowledge about the community
structure of the underlying network. Statistical model based clus-
tering algorithms such as adaptive forgetting factor for evolution-
ary clustering and tracking (AFFECT) [4] smooths the proximity
between objects over time followed by a static clustering method.
However, AFFECT assumes a stochastic block model for the adja-
cency matrix and has high computational complexity. Tensor based

This work was in part supported by the NSF CCF-1615489 and Schlum-
berger Foundation, Faculty for the Future.

community detection methods [5] use non-negative PARAFAC to
detect the community structure in binary temporal networks. How-
ever, representing the temporal network by a single tensor may not
track the community structure over time. Under modularity based
methods, a generalized Louvain for multi-layer modularity maxi-
mization (GenLov) approach is introduced in [6]. This approach
has some shortcomings as discussed in [7]. Most recently, a multi-
objective optimization genetic algorithm (DYNMOGA) that consists
of snapshot and temporal costs is proposed in [8]. DYNMOGA has a
high computational cost that increases as the number of generations
increases.

In this paper, an evolutionary spectral clustering approach is in-
troduced to detect and track the community structure in weighted
and binary temporal networks. In particular, a low-rank approxi-
mation of the observed adjacency matrix is first obtained to reduce
the effect of noise and outliers. Next, the corresponding subspace is
extracted with the constraint that the network evolves smoothly over
time. The current paper differs from existing work in some key ways.
First, the proposed method is effective for both binary and weighted
networks unlike some existing methods that are limited to binary
networks [5]. Second, the low-rank approximation of the adjacency
matrix removes noise and results in a more robust presentation of the
network’s community structure. Third, a smooth clustering assign-
ment is attained over time by minimizing the distance between the
projection matrices that span the subspaces of the consecutive time
points. Finally, a cost function that tracks changes in the community
structure across time is introduced.

2. BACKGROUND: SPECTRAL CLUSTERING

Let G = {V,E,A} be an undirected weighted or binary graph with
a set of nodes V = {v1, . . . , vn}, and a set of edges, E, that rep-
resent the objects in the network and pairwise similarities between
them, respectively. The adjacency matrix, A ∈ Rn×n, is symmet-
ric with Aij ∈ [0, 1] for weighted networks and Aij ∈ {0, 1} for

binary networks. The degree of a node is defined as di =
n∑
j=1

Aij

and the degree matrix, D, is defined as the diagonal matrix with
{d1, . . . , dn} on its diagonal [1]. For a temporal network with T
time points, a set of undirected weighted or binary graphs is con-
structed to represent the network over time as {G(t)}, where t ∈
{1, 2, . . . , T}. The graph at each time point is represented by the
adjacency matrix A(t) ∈ Rn×n.

One common community detection method for static networks
is spectral clustering, which maps the relationship between the nodes
in a graph to a lower dimensional subspace. Spectral clustering
solves the optimization problem: minU∈Rn×r Tr

(
U>ΦAU

)
, s.t

U>U = Ir [1], where > is the transpose operator and ΦA =

I −D−
1
2 AD−

1
2 is the normalized Laplacian matrix with D as the
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diagonal degree matrix. The solution to the optimization problem is
the matrix U where its columns are the r eigenvectors that corre-
spond to the smallest r eigenvalues of ΦA. The community struc-
ture is then determined by applying k-means to the matrix U [1].
The number of eigenvectors, r, refers to the number of clusters in
the network.

3. LOW-RANK ESTIMATION BASED EVOLUTIONARY
SPECTRAL CLUSTERING (LR-ESC)

3.1. Problem formulation

Let A(t) ∈ Rn×n be a noisy observed adjacency matrix of a low-
rank network L(t) ∈ Rn×n. The objective is to attain a smooth
community assignment from the noisy observations of the temporal
network. In order to achieve this goal, we propose to estimate the
low-rank adjacency matrix at each time point and extract the cor-
responding subspace with the constraint that the network evolves
smoothly across time. This objective can be presented with the fol-
lowing optimization problem 1:

(1)min
L∈Rn×n,U∈Rn×r

1

2
‖A− L‖2F + µ‖L‖∗ + λ1Tr(U

>ΦLU)

+ λ2‖UU> −U(t−1)U(t−1)>‖2F , s.t

U>U = I,L = L>, Lij ≥ 0, Lii = 0.

The first two terms characterize the low-rank approximation prob-
lem [9], [10], [11] with additional constraints to impose symmetry
and nonnegativity of the estimated low-rank adjacency matrix with
zeros on the diagonal. The third term with the constraint U>U = I,
represents the spectral clustering problem which is included to de-
tect the community structure of the estimated low-rank network, L,
at time point t. The normalized Laplacian matrix, ΦL, is defined in
terms of the low-rank approximation as ΦL = I −D−0.5LD−0.5.
The last term quantifies the distance between two projection matrices
[12], span(U) and span(U(t−1)), which is introduced to minimize
the distance between the consecutive networks’ subspaces at time
points t and t − 1. This term guarantees that the network structure
evolves smoothly over time. Moreover, this distance measure is not
affected by the variation of number of clusters across time. The pa-
rameters µ, λ1 and λ2 > 0 are regularization parameters and are
chosen empirically.

3.2. Problem solution

In order to solve the problem in Eq. (1), alternating direction
method of multipliers (ADMM) is used [13]. The convergence
of this method is well-studied in literature [13] [14]. More-
over, proximal algorithms [15] [16] are used in combination with
ADMM since the nuclear norm is non-differentiable. The prox-
imity operator of a convex function f is defined as proxf (Y) =
argminL∈Rn×n f(L) + 1

2
‖ L −Y ‖2F . Our proposed solution of

the problem starts by introducing an auxiliary variable W to split
the problem as follows:

min
L∈Rn×n,W∈Rn×n

U∈Rn×r

1

2
‖A− L‖2F + µ‖L‖∗ + λ1Tr(U

>ΦWU)

+ λ2‖UU> −U(t−1)U(t−1)>‖2F , s.t W = L,U>U = I,

W = W>, Wij ≥ 0, Wii = 0,

(2)

1For the rest of the paper, the superscript, t, which denotes the matrices
at the current time point t will be taken out, e.g. A(t) will be A and so on.

where ΦW = I−D−0.5WD−0.5.
Next, the augmented Lagrange multiplier (ALM) function can

be reformulated by adding linear and quadratic terms to relax the
first equality constraint as follows:

(3)min
L∈Rn×n,W∈Rn×n

U∈Rn×r

1

2
‖A− L‖2F + µ‖L‖∗

+ λ1Tr(U
>(I−D−0.5WD−0.5)U)

+ λ2‖UU> −U(t−1)U(t−1)>‖2F+〈Xk,W − L〉
+
γ

2
‖W − L‖2F , s.t U>U = I, W = W>,

Wij ≥ 0, Wii = 0,

with Lagrange multiplier at the kth iteration defined as,

(4)Xk+1 = Xk + γ(Wk+1 − Lk+1).

The optimization problem in Eq. (3) can be solved at each time
point, t, by following the steps in Algorithm 1 where the primal
variables L,W and U are updated iteratively. First, Lk+1 is updated
by keeping only the terms with L, then combining the inner product
and Frobenius norm terms as:

(5)argmin
L ∈Rn×n

µ‖L‖∗ +
1 + γ

2
‖L− A + γHk

1 + γ
‖2F ,

with Hk = Wk + Xk

γ
. The update of Lk+1 can be further sim-

plified using the proximal operator as prox µ
γ+1
‖L‖∗(A+γHk

1+γ
) with

γ1 = 1+γ
2

and f(L) = ‖L‖∗. Let An = A+γHk

1+γ
and An =

QAnΣAnV>An be the SVD of the matrix An, singular value soft
thresholding is then used to update Lk+1 as:

(6)Lk+1 = QAnΩ µ
γ1

(ΣAn)V>An ,

where Ωτ is the element-wise thresholding operator defined as
Ωτ (a) = sgn(a)max(|a|−τ, 0).

Next, Wk+1 is updated by keeping the terms with W and com-
bining the inner product and Frobenius norm as:

argmin
W

f(W) : argmin
W∈Rn×n

−λ1Tr(U
k>Dk−0.5

WDk−0.5
Uk)

+
γ

2
‖W − (Lk+1 − Xk

γ
)‖2F s.t W = W>,Wij ≥ 0,Wii = 0.

(7)

A closed form solution can be computed by finding the gradient of
f(W) as γ(W−Lk+1+ Xk

γ
)−λ1D

k−0.5
UkUk>Dk−0.5

. Wk+1

is then calculated as:

(8)Wk+1 = Lk+1 − Xk

γ
+
λ1

γ
(Dk)

−0.5
UkUk>(Dk)

−0.5
.

Finally, spectral projected gradient (SPG) [17] method is used to
update W to ensure the satisfaction of all constraints with the pro-
jection operator, P(W), defined as:

P(W) =

{
Wij , if i 6= j and Wij ≥ 0,
0, if i = j or Wij < 0,

Finally, Uk+1 is updated by keeping only the terms with U as:

(9)
argmin
U ∈Rn×r

λ1Tr(U
>ΦW

k+1U)

+λ2‖UU> −U(t−1)U(t−1)>‖2F , s.t U>U = I.
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Using the cyclic property of the trace operator and expanding the
Frobenious norm term, the update of Uk+1 simplifies to the modi-
fied spectral clustering problem:

(10)min
U(t) ∈Rn×r

λ1Tr(U
>ΦW

k+1
modU), s.t U>U = I,

where ΦW
k+1
mod = Φk+1

W − λ2
λ1

U(t−1)U(t−1)> and ΦW
k+1
mod ∈ S+

n

where S+
n is the set of positive semidefinite matrices.

Algorithm 1 LR-ESC
Input: A ∈ Rn×n, U(t−1) ∈ Rn×r1 µ, λ1, λ2, ε.
Output: Clustering labels.
1: k ← 0
2: Initialize L← A, W← L.
3: γ ← 1.
4: Xk ←Wk − Lk . % Define dual variable
5: Pk1 = 1

2
‖A−Lk‖2F , Pk2 = µ‖Lk‖∗, Pk3 = λ1Tr(Uk>ΦW

kUk),

Pk4 = λ2‖UU> −U(t−1)U(t−1)>‖2F . % Define primal objectives

6: while ‖Pk+1
1 −Pk1‖

2
F

‖Pk1‖
2
F

> ε and
‖Pk+1

2 −Pk2‖
2
F

‖Pk2‖
2
F

> ε and

‖Pk+1
3 −Pk3‖

2
F

‖Pk3‖
2
F

> ε and
‖Pk+1

4 −Pk4‖
2
F

‖Pk4‖
2
F

> ε and ‖X
k+1−Xk‖2F
‖Xk‖2

F

> ε

do
7: Update Lk+1 using Eq. (6).
8: Update Wk+1 using Eq. (8) and SPG method [17].
9: Update Uk+1 by solving Eq. (10).

10: if k = 2 then
11: Calculate the number of clusters using Eq. (11).
12: end if
13: Update Xk+1 using Eq. (4).
14: Update Pk+1

1 , Pk+1
2 , Pk+1

3 and Pk+1
4 using Step 5.

15: k ← k + 1.
16: end while
17: Apply k-means on U to obtain clustering labels.

3.3. Determining number of clusters

In LR-ESC, the number of clusters at each time point is determined
using the asymptotical surprise (AS) metric [18]. After the iterations
start at Step 10 in Algorithm 1, Uk+1 is calculated using a range
of (2-20) eigenvectors followed by k-means clustering. The correct
number of clusters at time point t is then determined as:

(11)r : argmax
r

AS(A, Clustering labels),

whereClustering labels : {C1, C2, . . . , Cr}. The number of clus-
ters is then fixed for time point t for the remaining iterations until the
algorithm converges and the number of clusters is updated at each
time point.

3.4. Tracking changes in community structure across time

A cost function to track the changes in the community structure is
defined through the distance between the projection matrices of the
consecutive subspaces:

(12)Cost = ‖UU> −U(t−1)U(t−1)>‖2F .

The proposed cost function represents the minimum distance be-
tween consecutive subspaces and the changes in the cost function
reflect the changes in the community structure.

Data Sets Method VI DNOC

AD = 32,
z = 2,

nc% = 10%
µ = 0.5
λ1 = 0.1

λ2/λ1 = 0.1

LR-ESC 0± 0 4± 0

AFFECT 0.2± 0.047 4± 0

GenLov 0.119± 0.043 4± 0

DYNMOGA 7.57× 10−5 ± 0.001 4± 0

AD = 32,
z = 5,

nc% = 30%
µ = 0.5
λ1 = 0.1

λ2/λ1 = 0.1

LR-ESC 0± 0 4± 0

AFFECT 0.471± 0.100 4.79± 1.438

GenLov 0.259± 0.076 4± 0

DYNMOGA 0.087± 0.032 4.613± 0.766

AD = 20,
z = 3,

nc% = 20%
µ = 0.1
λ1 = 0.1

λ2/λ1 = 0.1

LR-ESC 0.002± 0.004 4± 0

AFFECT 0.408± 0.091 4.05± 0.22

GenLov 0.2± 0.042 4± 0

DYNMOGA 0.094± 0.035 5.06± 1.05

Table 1. Comparison of the performance of the LR-ESC and
state-of-the-art algorithms in detecting the community structure of
Newman-Girvan benchmark networks in terms of VI and DNOC av-
eraged over time and 100 simulations.

4. RESULTS

4.1. Simulated networks

In order to evaluate the performance of the proposed approach, a
set of simulated binary and weighted temporal networks is gener-
ated. LR-ESC is compared to the state-of-the-art algorithms includ-
ing AFFECT [4], DYNMOGA [8] and GenLov [6] using the varia-
tion of information (VI) metric [19] and detected number of clusters
(DNOC). A low score of VI reflects a better performance.

4.1.1. Newman-Girvan benchmark

The data set described by Girvan and Newman in [5] is used to vali-
date the performance of LR-ESC in detecting and tracking the com-
munity structure in binary temporal networks. The temporal network
consists of 20 time points with 128 nodes divided into 4 clusters.
Each node has a fixed average degree (AD) and shares a number (z)
of edges with the nodes from other communities. As AD increases,
the network becomes more dense and as z decreases, the clusters
become more distinct. In order to introduce temporal changes to
the community structure over time, a percentage of nodes (nc%) is
moved randomly from their communities and assigned to other com-
munities at each time step. A set of temporal networks with differ-
ent community structures using different parameters are generated
as presented in Table 1. The simulations are repeated 100 times and
the average VI for the different methods and networks is reported in
Table 1. The selected values of the regularization parameters are also
given in Table 1. As it can be seen from the table, LR-ESC algorithm
performs better than the other methods in detecting the community
structure and the correct number of clusters over time for the differ-
ent networks. Moreover, LR-ESC is robust and can detect the correct
community structure even when AD is low or z and nc% are high
as in data sets 2 and 3.
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4.1.2. Simulated weighted temporal networks

A set of weighted dynamic networks are generated for 60 time points
with 100 nodes. Intra and inter-cluster edges are selected from a
truncated Gaussian distribution, N (µintra, σintra, µinter, σinter),
in the range of [0, 1]. Sparse noise (SN%) is added to the inter-
cluster edges with different percentages. For illustration purposes,
the results for two data sets are presented in Fig. 1. Data set 1 is gen-
erated with SN% = 20% and the edges during time intervals (1 −
20, 41− 60) and (21− 40) are selected fromN (0.6, 0.3, 0.2, 0.1)
and N (0.8, 0.2, 0.3, 0.2), respectively. The first 20 networks con-
sist of 4 clusters and the nodes in each cluster are: C1(1 − 30),
C2(31 − 60), C3(61 − 80), C4(81 − 100). The next 20 networks
consist of 5 clusters and the nodes in each cluster are: C1(1 − 30),
C2(31− 45), C3(46− 60), C4(61− 80), C5(81− 100). The last
20 networks consist of 6 clusters and the nodes in each cluster are:
C1(1−15), C2(16−30), C3(31−45), C4(46−60), C5(61−80),
C6(81− 100). The second data set is generated with SN% = 10%
and the edges during time intervals (1−20, 41−60) and (21−40)
are selected fromN (0.5, 0.1, 0.2, 0.1) andN (0.7, 0.1, 0.2, 0.1), re-
spectively. The networks during time intervals (1 − 20, 41 − 60)
consist of 4 clusters and the nodes in each cluster are: C1(1 − 30),
C2(31 − 60), C3(61 − 80), C4(81 − 100) whereas time interval
(21 − 40) consists of 8 clusters and the nodes in each cluster are:
C1(1−15), C2(16−30), C3(31−45), C4(46−60), C5(61−70),
C6(71− 80), C7(81− 90), C8(91− 100).

The performance of LR-ESC is compared to other methods in
Fig. 1. The regularization parameters, (µ, λ1, λ2/λ1) are (1, 0.1,
0.3). The simulations are repeated for 100 times and the cost func-
tion, DNOC and VI are averaged over all simulations. From Fig.
1(a) and (b), it can be seen that the cost function reflects the changes
in the community structure over time, around time points 20 and 40.
Moreover, Fig. 1(c)-(f) show that LR-ESC outperforms other meth-
ods in terms of detecting the correct structure and number of clusters
over time. The performances of AFFECT and GenLov decline as the
size of the clusters becomes smaller and SN% increases. In particu-
lar, GenLov prefers bigger clusters and tends to merge small clusters
as can be seen during time interval 20− 40 in Fig. 1(f).

4.2. Real network: Contacts in a workplace temporal network

LR-ESC is evaluated on social network collected by the SocioPat-
terns collaboration [20] representing contacts during working hours
between 92 employees in a workplace over two weeks (June, 24th-
July, 5th) [21]. There are 5 departments with 3 scientific depart-
ments, DISQ (15 people), DSE (33 people) and DMCT (26 people);
and two other departments SFLE (4 people) and SRH (13 people).
10 weighted temporal networks are constructed to represent the face-
to-face interactions between the employees for 10 workdays. Each
network consists of 11 time points and each time point refers to an
hour during the day. LR-ESC is applied to detect and track the struc-
ture over time for each day separately. For illustration purposes, the
results for workday 10 are presented in Fig. 2. The changes in the
cost function presented in Fig. 2(a) reflect the times that correspond
to meetings or break times in the morning, lunch time and end of
the day similar to the results reported in [21]. The detected commu-
nity structures for selected change points are shown in Fig. 2(b)-(d)
[22]. As it can be seen from Fig. 2(b), big clusters that consist of
employees from the three scientific departments are detected during
meeting time. A big cluster that consists of employees from differ-
ent departments is also detected during lunch time as in Fig. 2(c),
whereas small clusters that correspond to the different departments
are detected near the end of the day as in Fig. 2(d). These results

agree with the observed contact activity pattern for the employees in
the building as discussed in [21].

5. CONCLUSIONS

In this paper, a low-rank approximation based evolutionary cluster-
ing approach is introduced to detect and track the community struc-
ture of temporal networks. In addition, a cost function is defined
to track changes in the structure of the temporal network. The pro-
posed algorithm detects the community structure in both weighted
and binary temporal networks. Furthermore, it provides robustness
to noise and outliers and results in temporally smooth cluster assign-
ment. The results show that the proposed approach can detect and
track the community structure in temporal networks efficiently and
outperforms state-of-the-art algorithms.
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Fig. 1. Comparison between LR-ESC and state-of-the art algorithms
for data sets 1 and 2: (a) and (b) The cost function calculated by LR-
ESC, (c) and (d) DNOC for different algorithms, (e) and (f) Com-
parison of VI between LR-ESC, AFFECT and GenLov.
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