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ABSTRACT

We introduce a novel discrete signal processing framework, called
discrete-lattice SP, for signals indexed by a finite lattice. A lattice is
a partially ordered set that supports a meet (or join) operation that
returns the greatest element below two given elements. Discrete-
lattice SP chooses the meet as shift operation and derives associated
notion of (meet-invariant) convolution, Fourier transform, frequency
response, and a convolution theorem. Examples of lattices include
sets of sets that are closed under intersection and trees. Thus our
framework is applicable to certain sparse set functions, signals on
sparse hypergraphs, and signals on trees. Another view on discrete-
lattice SP is as an SP framework for a certain class of directed graphs.
However, it is fundamentally different from the prior graph SP as
it is based on more than one basic shift and all shifts are always
simultaneously diagonalizable.

Index Terms— Lattice Fourier transform, lattice shift, graph
signal processing, hypergraph, algebraic signal processing

1. INTRODUCTION

Signal processing (SP) is a classical data science, founded on a well-
developed theory of signals (or data) indexed with time and linear
time-invariant systems. The theory provides the key basic concepts
of convolution, Fourier transform, sampling, and others. The advent
of big data has dramatically increased not only the size but also the
variety of data to be processed or analyzed, thus it is of great inte-
rest to port basic SP concepts, and hence the large SP tool set that
builds on it, to data with other index domains. As one prominent
example, many very successful neural nets are built from convoluti-
ons and new types of convolutions for graphs thus have found direct
applications in this domain [1].

A general platform to derive new linear SP frameworks is pro-
vided by the algebraic signal processing theory (ASP) [2, 3]. It pro-
vides the basic axioms and theory and identifies the definition of the
shift operation as the key concept: the shift captures the structure of
the index domain and from its definition a shift-invariant SP frame-
work including all basic SP concepts can be derived. Graph SP as
introduced in [4, 5] builds on ASP by stipulating the adjacency ma-
trix as shift (see also [3, Sec.XV-B]). An alternative framework can
be built using the Laplacian as shift as done in [6].

Contributions. In this paper we build on classical lattice the-
ory [7, 8] to introduce discrete-lattice SP, a novel linear SP frame-
work for signals indexed by semilattices or lattices. A semilattice is
a partially ordered set that supports a meet (or join) operation that
returns for every two elements their largest lower bound (or smallest
upper bound). In a lattice both meet and join are available. We define
the shift through the meet operation and, following ASP, derive as-
sociated notions of shift-invariant systems, convolution or filtering,

Fourier transform, frequency response, and convolution theorem. In
contrast to discrete-time SP or graph SP, filters are not generated by
one basic shift but by several, their number depending on the struc-
ture of the lattice. Lattice theory guarantees their simultaneous dia-
gonalization and thus a Fourier transform. We illustrate the theory
with a small example.

Finally, we will discuss possible application domains that in-
clude certain edge- or node-weighted sparse hypergraphs, sparse set
functions, and signals on trees. Discrete-lattice SP can also be vie-
wed as an SP framework (different from graph SP) for a certain class
of directed graphs whose adjacency matrices have only the eigenva-
lue zero and are never diagonalizable.

Related work. Just as graph SP builds on concepts from alge-
braic graph theory, our work builds on the algebraic aspects of lattice
theory [7, 8], reinterpreted and expanded for use in signal proces-
sing. In particular, [9] allows us to derive the spectral concepts for
lattices. We also took inspiration from [10], which provides fast al-
gorithms for the the discrete lattice transform (called Moebius trans-
form) and its inverse (called zeta transform).

There are various ways of defining a form of spectral analysis
for hypergraphs, most of which approximate it by a graph to then
use spectral graph theory based on adjacency matrix or Laplacian.
A good brief overview is given in [11]. A different approach is ta-
ken in [12] using simplicial complexes. Our approach is different
due to a different notion of shift, and applicable to edge-weighted
hypergraphs whose edge set is closed (or almost closed) under in-
tersection. Applications of hypergraphs include [13, 14, 15]. Set
functions are equivalent to hypergraphs and have various applicati-
ons (e.g., [16, 17, 18]) including in machine learning [19]. In [20] we
introduced an SP framework for (non-sparse) set functions, which is
a particularly well-structured special case of this paper as we will
explain in detail later.

A number of SP frameworks based on a shift other than the stan-
dard time shift (or translation) have been defined. As said above,
two prominent examples are graph SP based on the Laplacian [6]
or the adjacency matrix [4] as shift; the shift-invariant filters then
become polynomials in the shift. Reference [1] discusses also con-
volutions on manifolds. A special case of graph SP is discrete-space
SP, which assumes a symmetric shift and underlies the discrete co-
sine and sine transforms [21]. A generalization considers arbitrary
nearest-neighbour relations [22]. SP frameworks with more than
one, but commuting, basic shifts have been defined in [23, 24, 25]
for signals on a hexagonal or quincunx grid, respectively.

2. BACKGROUND: LATTICES

We provide basic background on semilattices and lattices. Good re-
ference books for lattice theory are [7, 8].
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(a) Random
semilattice

(b) Total order
lattice

(c) Subset lattice

Fig. 1: Examples of semilattices L. The labels are the names of the
nodes, i.e., semilattice elements. In this papers we consider signals
on L, i.e., that associate values which each node.

We consider finite sets L with a partial order ≤, also called
posets. We denote elements of L with lower case letters a, b, x, . . . .
Formally, a poset satisfies for all a, b, c ∈ L: (a) a ≤ a; (b) a ≤ b
and b ≤ a implies a = b; and (c) a ≤ b and b ≤ c implies a ≤ c.
We use a < b if a ≤ b but a 6= b.

We say that b covers a, written as a ≺ b, if a < b and there is
no x ∈ L with a < x < b. So a is a largest element (there could be
several) below b.

A meet-semilattice is a poset L that also permits a meet opera-
tion a ∧ b, which returns the greatest lower bound of a and b. For-
mally, it satisfies for all a, b, c ∈ L: (a) a∧a = a; (b) a∧ b = b∧a;
and (c) (a ∧ b) ∧ c = a ∧ (b ∧ c). The latter two show that ∧ is
commutative and associative.

Using the notion of cover, semilattices can be visualized through
a directed graph (digraph) (L,E), i.e., the nodes are the elements
of L and (b, a) ∈ E if b covers a. The elements of E are called
covering pairs. The graph is typically drawn such that if a ≤ b, then
b is drawn higher than a.

Fig. 1a shows an example of a meet semilattice. The digraph
shows, e.g., e ≤ a, g ≤ f, b ∧ f = g, a ∧ e = e, etc. Note that
due to the meet it must have a unique minimal element: removing
g yields a digraph that is not a semilattice. So not all digraphs are
semilattices.

Dually to the meet-semilattice, one can define a join-semilattice
as a poset with an operation ∨ that returns the least upper bound and
satisfies analogous properties and necessarily has a unique maximal
element. E.g., Fig. 1a is not a join-semilattice since a ∨ d does not
exist. A poset which is both a meet- and join-semilattice (and with
proper interaction between the two operations) is called a lattice.
Fig. 1b shows the lattice arising from the total order on a set with
four elements.

A very structured example of a lattice is the power set (set of
all subsets) of a finite set S with ∩ as meet and ∪ as join, which
yields a directed hypercube as associated digraph. Fig. 1c shows the
example for S = {α1, α2, α3}: here, a = S, b, c, d are the two-
element subsets, e, f, g the one-element subsets, and h = ∅. Signals
indexed by power sets are called set functions.

In this paper we focus on meet-semilattices, but all theore-
tical results and concepts can be analogously derived for join-
semilattices. For lattices there is thus a choice whether to use the
meet or join in our framework.

Finally, we note that in the finite case here, every meet-
semilattice can be easily extended to a lattice by adding one auxiliary
maximal element that is larger than all x ∈ L. This guarantees the
existence of the join.

3. DISCRETE-LATTICE SP

In this section we define discrete-lattice SP1 (DLSP), a signal pro-
cessing framework for signals, or data, associated with the elements
of a given lattice. A different viewpoint of discrete-lattice SP is that
it is an alternative, and novel, form of graph SP for the special di-
graphs (e.g., those in Fig. 1) associated with lattices. We discuss the
differences to graph SP later.

We define DLSP through the shift operation and then derive
the associated notions of convolution or filtering, Fourier transform,
frequency response, and convolution theorems. A concrete exam-
ple and the application to hypergraphs is then explained in the next
section.

Lattice signals. We consider real signals indexed with the ele-
ments of a given meet-semilattice L of size n:

s : L→ R, x 7→ sx. (1)

We will also write s = (sx)x∈L, but assume a specific order to
obtain a coordinate vector only if stated. The set of signals is an
n-dimensional vector space.

Shifts. The central concept in the derivation of a signal proces-
sing framework is the definition of the shift operation, as all other
concepts can be derived from it [2]. Our construction uses the se-
milattice operation ∧ as shift. Formally, for every a ∈ L we define
the

shift by a: (sx∧a)x∈L,

which captures the semilattice structure. Obviously, this shift is a
linear mapping on the signal space since shifting αs+βs′ (α, β ∈ R)
by a yields α(sx∧a)x∈L + β(s′x∧a)x∈L.

In discrete-time SP a signal can be shifted by any integer value,
but each such shift can be expressed as a repeated shift by 1, i.e.,
the shift by 1 generates all others. The question is which shifts by a
in our lattice are needed to generate all others. Intuitively, it should
be those that move the elements of the lattice the least, i.e., given
by the largest a. Lattice theory explains that the generators of the
meet-semilattice are precisely all meet-irreducible elements [8], i.e.,
all a ∈ L that cannot be written as a = b ∧ c with b, c 6= a.

In Fig. 1a the basic shifts that generate all others are thus given
by a, c, b, d, f . In Fig. 1b these are all elements, and in Fig. 1c they
are a, b, c, d.

Convolution. Since we can now shift by any a ∈ L we can
linearly extend to a notion of convolution. Namely, if h = (hq)q∈L
is a filter we obtain

h ∗ s =

(∑
q∈L

hqsx∧q

)
x∈L

.

Shift-invariance. Since the meet operation is commutative, all
shifts commute with each other and thus also with all filters, in other
words, our SP framework is shift-invariant.

Pure frequencies and frequency response. To derive the as-
sociate Fourier transform we first determine the pure frequencies,
i.e., the signals that are simultaneous eigenfunctions for all shifts
and thus for all filters. Note that their existence is possible since the
shifts commute.

Lattice theory provides the frequencies through the Zeta trans-
form [9]. Translated to our SP setting, there is a pure frequency fy

1More correct would be discrete-semilattice SP, but we opted for simpli-
city.
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for every y ∈ L, defined as

fy = (ιy≤x)x∈L. (2)

Here, ιy≤x = ιy≤x(x, y) is the characteristic function of y ≤ x:
ιy≤x = 1 if y ≤ x holds, and = 0 else. To show the assertion, we
shift fy by some q ∈ L and get

(ιy≤x∧q)x∈L.

If y ≤ q, then y ≤ x ∧ q ⇔ y ≤ x and thus the result is fy . This
means the frequency response of a shift by such a q is 1. If y 6≤ q,
then y ≤ x ∧ q never holds and the result is the zero vector. This
means the frequency response of a shift by such a q is 0.

By linear extension, the frequency response of a filter h =
(hq)q∈L at frequency y is computed as

hy =
∑

q∈L, y≤q

hq. (3)

Note that the frequencies are indexed by y ∈ L, this suggests
that they inherit the partial order of L that then stipulates which fre-
quencies are high and which low. In our example below we provide
more evidence that this interpretation is meaningful.

Fourier transform. We denote the Fourier coefficients of a sig-
nal s as ŝ = (ŝy)y∈L. Equation (2) shows that the inverse Fourier
transform is given by

sx =
∑
y∈L

(ιy≤x)ŝy =
∑
y≤x

ŝy.

This equation is inverted using the classical Moebius inversion for-
mula [9] and yields the associated Fourier transform that we call
discrete lattice transform (DLT or DLTL):

ŝy =
∑
x≤y

µ(x, y)sx. (4)

Here, µ is the Moebius function, defined recursively as

µ(x, x) = 1, for x ∈ L,

µ(x, y) = −
∑

x≤z<y

µ(x, z), x 6= y.

Convolution theorem. The preceding results yield the follo-
wing convolution theorem:

ĥ ∗ s = h� ŝ.

Note that frequency response and Fourier transform are computed
differently. The frequency response can be inverted using an analo-
gous Moebius inversion formula [7, p. 304].

Fast algorithms. Fourier transform and frequency response and
their inverses can be computed in O(µn) many operation where µ
is the number of meet-irreducible elements of L [10]. In some cases
this can be further to O(η), where η is the number of covering pairs.

Comparison with discrete-time SP. We compare the derived
main concepts to their counterparts in finite discrete-time SP. By fi-
nite we mean signals with finite support, assumed to be periodically
extended. The comparison is summarized in Table 1. We note that
finite discrete-time SP is not a special case of DLSP. The former as-
sumes that the signals resides on a circle, which is not a lattice or
semilattice since it lacks minimum and maximum.

Table 1: Comparison of DLSP and finite DTSP. For the latter, the
signals are assumed periodically extended, i.e., the indices are all
considered mod n as usual. For simplicity we denote the index range
with [n] = (0, . . . , n− 1) and set ωn = exp(−2πj/n).

Concept DLSP DTSP

Signal (sx)x∈L (sk)k∈[n]
Filter (hq)q∈L (hm)m∈[n]
Basic shifts (sx∧b)x∈L, b meet irred. (sk−1)k∈[n]
Convolution

∑
q∈L hqsx∧q

∑
0≤m<n hmsk−m

Pure frequency (ιy≤x)x∈L, y ∈ L 1
n
(ω−k`n )k∈[n], ` ∈ [n]

Fourier transform ŝy =
∑
x≤y µ(x, y)sx ŝ` =

∑
k∈[n] ω

k`
n sk

4. EXAMPLE

As an example we consider the lattice in Fig. 1a with five basic shifts
a, b, c, d, f . To allow for a representation of shifts, filters, and Fou-
rier transform as matrices, we order the elements of L as suggested
by the names from a to g. Signals are viewed as column vectors.
Since the chosen order is a topological sort of the lattice (i.e., com-
patible with its partial order), all matrices will become upper trian-
gular.

Every shift by x ∈ L can be represented by a matrix Sx; we
consider x = c as example. To obtain Sc, we let c operate on the
canonical basis vectors (ιx=k)x∈L for k ∈ L. For example, for
k = e, the shift by c maps

(ιx=e)x∈L 7→ (ιx∧c=e)x∈L.

x∧c = e holds for x = a, b, e, thus the result is (1, 1, 0, 0, 1, 0, 0)T ,
which becomes the eth column of Se. The overall result is shown in
Fig. 2a. Note that Se and the other shift matrices are sparse, but filter
matrices are (triangular) dense in general.

Next, we compute the pure frequencies using (2) which are the
columns of DLT−1

L . The result is shown in Fig. 2b. We observe the
constant all-one signal as lowest frequency, just as in discrete-time
SP. It is the pure frequency associated with the minimal element in
L.

Finally, the DLTL in matrix form is computed using (4) or by
inverting Fig. 2b and shown in Fig. 2c. We note that in general,
entries other than 1, 0,−1 do occur. The spectrum of a signal s now
can be computed as the matrix vector product

ŝ = DLTL s.

All shift and filter matrices are diagonalized by the DLT. Indeed

DLTL SeDLT−1
L = diag(0, 0, 1, 0, 1, 0, 1, 0).

As expected, all eigenvalues (i.e., the frequency response of the shift
by e) are zero or one.

In discrete-time SP, a basic low pass filters adds a signal
to its shifted version: (sn + sn−1)n. Translated to DLSP, we
add all basic-shifted versions, i.e., the low pass filter becomes
h = (1, 1, 1, 1, 0, 1, 0)T . The frequency response, computed with
(3), thus becomes h = (1, 2, 1, 2, 3, 1, 5).2 Above we suggested that
the frequencies inherit the partial order of L, i.e., we can associate
its values with the elements of the lattice. The visualization of the

2A detail here is that the identity mapping is a filter if and only if L con-
tains a maximal element m (shifting by m is then the identity). If this is not
available we can only add the basic-shifted versions and not the signal itself.
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0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


(a) Shift matrix Se


1 1 0 1 1 0 1
0 1 0 0 1 0 1
0 0 1 0 1 0 1
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1


(b) DLT−1

L containing the pure frequencies
as columns from high (left) to low (right)


1 −1 0 −1 0 0 1
0 1 0 0 −1 0 0
0 0 1 0 −1 0 0
0 0 0 1 0 0 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


(c) DLTL in matrix form (d) Frequency response

of a basic low pass filter

Fig. 2: Basic DLSP concepts instantiated for the meet-semilattice in Fig. 1a.

response in Fig. 2d shows that indeed lower frequencies are ampli-
fied. In particular, the lowest values are associated with the maximal
elements. The definition in (3) shows that this holds in general.

Discussion. We already pointed out that DLSP does not include
finite DTSP as special case since a circle is not a semilattice.

DLSP provides an SP framework for a special class of digraphs,
but is fundamentally different from the graph SP in [4, 5] (see also [3,
Sec. XV]). In graph SP only one basic shift (the adjacency matrix)
is available and diagonalization is not guaranteed. In fact, for all
digraphs (such as Fig. 1) associated with semilattices, the associated
adjacency matrix has the characteristic polynomial xn (n = |L|)
and is thus not diagonalizable. To see this, order L topologically,
which makes the adjacency matrix upper triangular with zeros on
the diagonal. In contrast our framework, based on lattice theory,
guarantees simultaneous diagonalization of all shifts and hence all
filters and hence the existence of a Fourier transform. One could
argue that the notion of filtering also better captures the details of
the lattice structure.

A special case of DLSP is the discrete-set SP that we intro-
duced in [20]. It arises from setting L = 2U , the power set of
a finite set U = {α1, . . . , αt}, with ∧ = ∩. Thus n = 2t.
The meet-irreducible elements are the maximal subsets U \ {αi},
which yields the t basic shifts (sV )V⊂U 7→ (sV ∩U\{αi})V⊂U =
(sV \{αi})V⊆U . We called these natural delays in [20] and derived
all associated SP concepts. In essence, [20] considers the special
case of subset lattices such as the one in Fig. 1c.

Finally, the basic shifts in DLSP are not invertible but this can
happen also in graph SP and even in the space SP underlying the
discrete cosine transform [21].

5. POSSIBLE APPLICATIONS

We discuss possible application scenarios in which signals are natu-
rally indexed by lattices.

Signals on hypergraphs. Given a finite set of nodes V , an edge-
weighted hypergraph [26, 27] given by H = (V,E,w), where E ⊆
2V is the set of hyperedges (2V is the power set or set of all subsets
of V ) and w : E 7→ R are their weights. Typically, hypergraphs are
very sparse, i.e., E is only a small subset of 2V . We can view w as
lattice signal with ∧ = ∩ if we extend E to its meet-closure E′, i.e.,
E′ contains all subsets of V that can be expressed as intersections,
or, equivalently, E′ is the smallest meet-subsemilattice of 2V that
contains E. The weights of the added hyperedges in E′ \ E are set
to 0. This construction makes particular sense if E is already almost
closed under the meet.

As a simple, somewhat artificial example consider a book writ-
ten (for example) in English. We set V as the alphabet and add an
edgeA ⊆ 2V toE of there is a word in the book whose character set
is exactly A. We set the weight wA = w(A) to the number of such

words making w our lattice signal. In many casesA,B ∈ E will im-
ply A ∩B ∈ E. If not, A ∩B is added to E with weight 0. Now E
is meet-closed (i.e., intersection-closed) and our framework can be
applied. The basic shifts correspond to computing the intersection
with the maximal occurring sets M ∈ E: wA 7→ wA∩M .

Finally, we note that in a hypergraph the roles of nodes and edges
can be exchanged to convert between weights on edges and weights
on nodes. As an example, consider now a node-weighted hypergraph
H = (V,E,w), where w : V 7→ R, i.e., w is a signal indexed by
the nodes of H . The dual hypergraph is given by H ′ = (E, V ′,w’),
where V ′ = {Fv ⊆ E, v ∈ F | v ∈ V } ⊆ 2E and w’(Fv) = w(v).
Now the prior discussion applies to H ′.

Set functions. The prior discussion shows that edge- or node-
weighted hypergraphs are equivalent to set functions, i.e., function
on the power set of a finite set. Thus our framework is applicable to
sparse set functions that are closed under meet. Set functions have
numerous applications as discussed in the introduction.

Signals on trees. Another example of meet-semilattices are
trees. Specifically, we view a tree upside down as digraph, as in
Fig. 1. The root is the smallest element and every node is covered
by its children. The meet-irreducible elements are then the leaves
of the tree. Our work thus offers a DSP framework for signals on
trees, different from graph signal processing as mentioned before.
An application example of tree signals is given in [28].

6. CONCLUSIONS

We introduced discrete-lattice SP for signals indexed by semilatti-
ces that support a meet operation. The derivation for an available
join was not shown but is analogous and will yield a dual result.
The first key component of discrete-lattice SP is a suitable notion of
shift-invariant convolution, where the shifts correspond to the meet
operation on the signal indices. The second is the associated Fou-
rier transform that diagonalizes all shifts and convolutions. While
lattices can be visualized as graphs, discrete-lattice SP is not compa-
rable to graph SP in which filters are generated from one basic shift,
whereas our framework used several, depending on the lattice struc-
ture. Interestingly, simultaneous diagonalization, and thus a Fourier
transform, is still guaranteed by lattice theory, whereas the adjacency
matrices of lattice graphs are never diagonalizable.

Our contribution is theoretical but we did point out possible ap-
plication domains including hypergraphs, set functions, and signals
on trees. More work is needed to explore such applications, expand
the theory, and to also develop a better intuition for what lattice con-
volutions and lattice Fourier transforms achieve in practice.
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