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ABSTRACT

Computational units implemented on nanoscale physical sub-
strates are susceptible to errors that can be catastrophic if
not mitigated. Statistical error compensation techniques have
become prevalent to safeguard computational units against
such hardware-failures. Algorithmic Noise Tolerance (ANT)
is one such technique that utilizes a low-fidelity replica unit to
detect and bypass such failures occurring within the primary
(main) computational unit. Connections between ANT and
the binary hypothesis testing as well as the information the-
oretic CEO problem have been explored for sub-exponential
error profiles, quadratic and logarithmic distortion functions.
However, there exist fundamental performance limits of ANT
approach even without such model-dependent restrictions.
The purpose of this paper is to explore fidelity-dependent
conditions that are universal over the statistical properties of
the computational units under which, the overall performance
of ANT is arbitrarily close to the fundamental limits.

Index Terms— Algorithmic Noise Tolerance, Statistical
Error Compensation, Calibration, Decision, Mixture Models.

1. INTRODUCTION

The trade-off between precision and reliability in nanoscale
systems is a prominent phenomenon challenging the expo-
nential improvement driven by the Moore’s law. As the
process technology feature sizes scale down, the computa-
tional uncertainties due to process, temperature and voltage
variations create reliability bottlenecks [1]. Statistical error
compensation (SEC) techniques motivated by information
and decision-theoretic frameworks provide robust, low-power
solutions at the subsystem level as an alternative to modular
redundancy-based error compensation techniques, which are
often power-hungry [2].

Algorithmic noise tolerance (ANT) is an SEC technique
that safeguards a high-precision computational unit that is
prone to hardware failures by detecting and bypassing such
errors via a low-precision yet robust calibration unit. ANT
builds decision statistics at low-power by measuring the dis-
tance between the outcome of the main computational unit
and that of the calibration unit, and it bypasses the erroneous
outcomes by switching between the units. ANT has been

shown to reduce the overall power consumption by over 50%
at the expense of logic overhead of less than 10%, while main-
taining false alarm probability, π1|0 < 0.1 and miss probabil-
ity, π0|1 < 0.01, [3–5]. These practical improvements moti-
vate the search for the fundamental limits of ANT as well as
a generalization of the replica-block based approach for low-
power statistical decision making.

A decision theoretic analysis of ANT with Bayesian priors
has been given in [3,6]. An information theoretic analysis es-
tablishing a connection between ANT and the Gaussian CEO
problem was given in [7]. As discussed in Section 2, these
analyses provide characterizations of specific error statistics
that can be eliminated using the ANT architecture. However,
even without statistical restrictions the following question can
be addressed: How can the binary hypotheses be tested while
only having access to external statistics? The purpose of this
paper is to explore fidelity-based criteria for the regions of op-
eration for a generalized ANT model, where the performance
of an oracle that has access to hardware failure information is
arbitrarily close to that of ANT.

This paper addresses the following fundamental chal-
lenges: The current analyzed model of ANT is limited to an
additive noise model and does not generalize to arbitrary hy-
pothesis testing frameworks and fidelity-based performance
criteria, such as those discussed in [8], for ANT are un-
known. In the typical analysis model shown in Fig. 1 (a),
ANT comprises a main unit followed by hardware errors and
an estimator unit, prone to estimation errors. Instead, we
propose a mixture model for the main block, seen in Fig. 2,
mixing a good computational unit with a bad one and instead
of an estimator of the main block, we model the calibration
unit as a robust yet lower-fidelity unit called the ugly unit. We
further propose criteria for the optimality and near optimality
of the ANT architecture via a fidelity-based ordering of each
unit and make the connection between the expected loss of
each unit and the expected distance between their outputs.

This paper is organized as follows: Section 2 discusses the
relation to previous work in detail. Section 3 introduces our
model and provides the mathematical foundations of our ap-
proach. Section 4 discussed fidelity-based performance limits
of a notional ANT architecture. Section 5 outlines proofs. A
set of numerical examples are given in Section 6.
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(b) Analogous model in the Gaussian CEO framework [7].

Fig. 1: Additive noise models for the ANT architecture from
decision and information theoretic frameworks

2. RELATION TO PRIOR WORK

The idea of low-power SEC goes back to [2, 9], where soft-
error cancellation was proposed for digital signal processing
(DSP) and low-power filtering. A decision theoretic analysis
of ANT was given in [6] and later improved upon in [3], un-
der the model given in Fig. 1 (a), [6, Fig. 1-2], for which
error statistics were assumed to belong to a sub-exponential
family, yielding that the distance between outcomes provides
the sufficient statistics [10]. An information theoretic explo-
ration of certain fundamental limits of ANT was given in [7]
by making an analogy between the ANT setup and the Gaus-
sian CEO problem as seen in Fig. 1 (b), [7, Fig. 1], under
quadratic and logarithmic distortion. Both of these models
propose additive hardware and estimation errors. This paper
proposes the mixture model in Fig. 2 to incorporate a broader
class of computational units that may be subject to hardware
and calibration errors and characterizes the performance of
ANT by the fidelity of these units.

3. PROBLEM DEFINITION

Let data D be generated from random variable X , (X → D)
and let the computational purpose of a system be D → X
with the loss function ` : R2 → R+ measuring the perfor-
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Fig. 2: Generalized model for ANT architecture

mance. The mixture model discussed in Section 3.1 is a gen-
eralization of the additive noise model of [3, 6, 7], Fig. 1 (a),
that incorporates fidelity-ordered main, calibration and failure
statistics.

3.1. A Generalized Model for ANT

The ANT architecture is modeled as consisting of three com-
putational units, henceforth called blocks: a main block that
comprises a good block producing an outcome G and a bad
one that produces B, which models intermittent failure of the
main computational path, and a calibration, or so-called ugly,
block producing U , modeling the lower-fidelity alternative,
should it be decided that the main block has failed, as seen in
Fig. 2. Intuitively, the main block produces M = G, when
there is no hardware failure, and producesM = B when there
is a failure. The ANT decision mechanism can use the cali-
bration block U to detect hardware failures and bypass them
by switching between M and U .

Formally, X → D → (M,U) ≡ ({G,B} , U) and the
ANT decision rule, denoted by δANT (·), operates on the
branch outcomes, (M,U), to make a decision between them:
δANT (M,U) ∈ {M,U} ≡ {G,B,U}. The block with
lower expected loss is understood to have higher fidelity:

E` (G,X) < E` (U,X) < E` (B,X) (1)

Here E· denotes the expectation operator, defined over the
triplet (Ω,F ,P), where we allow the random variables to be
real-valued: Ω = R, F = B(R) is the Borel σ-algebra and
P(·) is the probability measure.

The triplet (G,B,U) is conditioned on the hidden vari-
able X and the conditional probability density functions
pG|X , pB|X and pU |X represent the statistical characteristics
of the main block, the main block under hardware failure
and the calibration block respectively. These distributions
represent the computational properties of respective blocks
under uncertainties due to process, temperature and voltage
variations, which are commonly unknown or too costly to
model [1].

We allow the process of each block to be statistically
independent, that is, given the hidden variable X , outcomes
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G,B,U are conditionally independent from one another:
∀C ∈ {G,B,U}, C ↔ X ↔ {G,B,U} \ C, equivalently,
pGBU |X = pG|XpB|XpU |X , [11]. This assumption is similar
to the independence of estimation error and hardware error
in [3,6] and to the independence of noise in different branches
in [7].

The generalized model for ANT allows the main block to
switch modes of operation back and forth between the good
block and the bad block. Letting an independent Bernoulli
random variable of parameter p ∈ (0, 1), denoted by F ∼
B(p), determine the hardware failure, the following mixture
model characterizes the main block:

M = GF̄ +BF

Here, F̄ = 1− F and a failure happens when F = 1.
The purpose of ANT is to utilize the calibration random

variable U to determine whether a failure (F = 1) happens,
or not (F = 0), and bypass the main block with the cali-
bration block when it does. If pG|X and pB|X , were known
a priori, likelihood ratio would provide the sufficient statis-
tics for testing whether a failure has occurred or not, and
the Neyman-Pearson rule could be built upon it [10]. In-
stead, the ANT architecture builds statistics using the pair
(M,U) ≡ ({G,B} , U). In Section 3.2, we introduce the
ANT decision rule on an arbitrary metric space and define
a measure of performance as the regret with respect to the
optimal-yet-unattainable oracle decision rule.

3.2. Performance Criterion for ANT

ANT builds decision statistics from the pair (M,U) to test
whether M ∼ G or M ∼ B and bypass the main block when
M = B. Let d(·, ·) be a distance measure defined on R,
satisfying the axioms in [12], a general ANT decision rule
has the following form:

δANT (M,U) =

{
M if d(M,U) ≤ τ
U if d(M,U) > τ

Intuitively, ANT decision rule “favors” the main computa-
tional unit when it passes a “calibration check”, otherwise
it uses the calibration unit to bypass the main unit that is
“flagged” with hardware failure.

Now consider an oracle that has access to reliable infor-
mation on when a hardware failure, F , occurs. Such an oracle
minimizes its loss via the following decision rule:

δO(M,U |F = f) =

{
M if f = 0

U if f = 1

In practice, information on F is not easily, if at all, avail-
able. However, it serves as a useful benchmark for measur-
ing the performance of ANT. This paper proposes a conserva-
tive measure of performance by defining the regret of ANT as

the expected loss suffered from using the ANT decision rule,
δANT , against that of the oracle decision rule δO:

RANT (τ) = E`
(
δANT (M,U), X

)
− E`

(
δO(M,U |F ), X

)
A more intuitive form for RANT (τ), follows from the inde-
pendence of F and the total law of probability, [11]:

Proposition 1. For any triplet (G,B,U) of computational
units, the regret of ANT satisfies:

RANT (τ) = p̄RUGΦGUd (τ) + pRBUF
BU
d (τ). (2)

Here, p̄ = 1 − p, Rαβ , E` (α,X) − E` (β,X), where
(α, β) ⊂ {G,B,U}, ΦGUd , P (d(G,U) > τ) and FBUd ,
P (d(B,U) ≤ τ), when the distance metric is known from
context, we drop the subscript. The regret in (2) shows that
when ANT “misses” a hardware failure, which happens with
probability FBUd (τ), it is incurred a regret of pRBU . Sim-
ilarly, with probability ΦGUd (τ), ANT raises a “false alarm”
and switches back to U at regret p̄RGU . Let’s remark that
RUG and RBU are functionals of `(·, ·), where ΦGUd (τ) and
FBUd (τ) are functionals of d(·, ·). In Section 4, we explore the
connection between these functionals and quantify a fidelity
based characterization of the regret.

4. FIDELITY-BASED CHARACTERIZATION

The regret of ANT is a mixed functional of the distance mea-
sure d(·, ·) used to build the decision statistics and the loss
function `(·, ·) that determines the fidelity of a computational
unit. On a Hilbert space,H, the distance measure is given by:

d(M,C) = ‖M − C‖

where ‖·‖ is the norm associated with H, [12]. This sec-
tion explores the fundamental limits for the regret of ANT
for fidelities defined by any C-bi-Lipschitz loss function on a
Hilbert space,H. That is, ∀ {M,C} ⊂ {G,B,U}:

1

C
‖M − C‖ ≤ |`(M,X)− `(C,X)| ≤ C ‖M − C‖ (3)

In Section 4.1, we discuss the necessary conditions for ANT
to achieve the performance of an oracle decision rule.

4.1. Necessary Conditions for Optimal ANT

If ∃τ : RANT (τ) = 0, then ANT is optimal, that is, it oper-
ates with no-regret. The fidelity ordering in (1) yields that:

RANT (τ) = 0 ⇐⇒ ΦGUd (τ) = FBUd (τ) = 0. (4)

This follows from positivity of p, p̄, RGU and RBU and it
yields the following statistical necessary condition and its
fidelity-based sufficient counterpart:
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Proposition 2. A necessary condition for (4) is E ‖U −G‖ <
E ‖B − U‖, which is satisfied ∀(G,B,U) such that E`(G,X) <
E`(U,X) < 1

2C2+1E`(B,X).

The proof is outlined in Section 5 and follows from (3)
and the triangle inequality, [12]. In Section 4.2, we propose
fidelity conditions under which the regret of ANT is univer-
sally bounded.

4.2. Sufficient Conditions for ε-ANT

We call the setup where ∃ (ε, τ) such that, RANT (τ) ≤ ε, an
ε-ANT. First, we make a few observations that follow from
(3) and triangle inequality:

1. E ‖B − U‖ ≥ 1
CR

BU and E ‖G− U‖ ≤ CΣGU ,
where ΣGU , E`(G,X) + E`(U,X).

2. Chernoff Bound, [11]: log ΦGU (τ) ≤ − (τ−CΣGU)
2

3CΣGU

and logFBU (τ) ≤ − (Cτ−RBU)
2

3CRBU .

Here, ΣGU = E`(G,X) + E`(U,X) and we further define
∆ , RBU − ΣGU . These observations allow us to construct
the main result of this paper; the sufficient condition under
which ε-ANT exists.

Theorem 1. For any triplet (G,B,U) that satisfies ΣGU > 1
p̄

and RBU > 1/p, if

exp
∆2

3ΣGU
(
C + p̄

Cp

) + exp
∆2

3RBU
(

1
C + Cp

p̄

) > ε (5)

then, ∃τ such that RANT (τ) ≤ ε.
The first term on the left hand side of (5), controls the re-

gret due to “false alarm” and the second one controls that of
“miss”. The proof of Theorem 1 is outlined in Section 5. We
remark that the Chernoff bound is not generally sharp, how-
ever, it lends the necessary tool for our fidelity-based analysis
to be universal, which we demonstrate in Section 6.

5. PROOFS

Outline for the Proof of Proposition 2. The necessity follows
from ΦGU (τ) = FBU (τ) = 0 ⇒ E ‖U −G‖ < τ <
E ‖B − U‖. The sufficient condition follows from the lin-
earity of expectation applied to triangle inequality and (3) for
‖G− U‖, and non-negativity of the loss function and equa-
tions (1), (3) for ‖B − U‖.

Outline of the Proof of Theorem 1. The main idea is to use
the Chernoff bound, [11], to upper-bound the regretRANT (τ),
which is in terms of E ‖U −G‖ and E ‖B − U‖, then use
observation 1 and monotonicity of the Chernoff bound (with
respect to the expectation) to postulate the form in observa-
tion 2. Finally, observing that the minimizer is a logarithmic
Lambert function, an upper bound on the minimum yields the
theorem.
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Fig. 3: Universal bounds vs performance of ANT for different
error statistics: (a-b) for bias introducing hardware failure, (c-
d) burying noise (high variance) hardware failure

6. EXPERIMENTS

We propose a Gaussian mixture with G ∼ N (X,σG), U ∼
N (X,σU ) and the bad-block either introducing a bias B ∼
N (X + µB , σB) or introducing a very large variance noise.
We compare the performance of ANT to that of the oracle
over the range of τ values and demonstrate that the Chernoff
bounds that we propose in observation 2, indicate accurately
when the performance of ANT is optimal.

Experiment specifications are as follows: Figure 3 (a)-
(b) demonstrate the setup, where the bias that the “bad”
block introduces is the main source of distortion as, X ∼
Unif(0, 10), σG = 10, σB = σU = 20 with µB = 40. Fig-
ure 3 (c)-(d) illustrates the case, where the “bad” block has
very large variance: σG = 10, σU = 15, yet σB = 1.5e + 3.
As expected from Proposition 2 as σB decreases, the perfor-
mance of ANT deteriorates.

A key observation is that minimizing the upper bound
on RANT (τ) yields a τ value that is close to the true and
statistics-dependent optimal threshold value. This idea fur-
ther captures, albeit with less accuracy, the region of τ values
for which near-optimal ANT performance is maintained.

7. CONCLUSION

In this paper, we proposed a generalized model for the ANT
architecture and derived fidelity-based conditions that are uni-
versal over the statistical properties of the underlying compu-
tational units. We showed that under these conditions, the
performance of ANT is guaranteed to be quantifiably close to
that of an oracle decision rule that can not be attained.
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