
PERTURBED PROJECTED GRADIENT DESCENT CONVERGES TO APPROXIMATE
SECOND-ORDER POINTS FOR BOUND CONSTRAINED NONCONVEX PROBLEMS

Songtao Lu†, Ziping Zhao‡, Kejun Huang∗, and Mingyi Hong†

† Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
‡ Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong
∗Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611, USA

ABSTRACT

In this paper, a gradient-based method for bound constrained non-
convex problems is proposed. By leveraging both projected gradi-
ent descent and perturbed gradient descent, the proposed algorith-
m, named perturbed projected gradient descent (PP-GD), converges
to some approximate second-order stationary (SS2) points (which
satisfy certain approximate second-order necessary conditions) with
provable convergence rate guarantees. The proposed algorithm is
suitable for a large-scale problem since it only uses the gradient in-
formation of the objective function. It also seamlessly incorporates
variable constraints such as nonnegativity, which is commonly seen
in many practical machine learning problems. We provide a concrete
theoretical analysis showing that PP-GD is able to obtain approxi-
mate second-order solutions by extracting the negative curvature of
the objective function around the strict saddle points. Numerical re-
sults demonstrate that PP-GD indeed converges faster compared to
other first-order methods in the presence of strict saddle points.

Index Terms— Strict saddle points, projected gradient descent,
convergence rate, second-order stationary (SS2) points

1. INTRODUCTION

In this paper, we consider a class of nonconvex optimization prob-
lems under box constraints on the variables. To be more specific, the
problem is shown as the following:

minimize
x∈X

f(x) (1)

where f : Rd → R is twice differentiable (possibly nonconvex), and
X ∈ Rd denotes the bound constraint. Such problem finds many
applications in machine learning and signal processing, including:
• Nonnegative matrix factorization. Given a data matrix M ∈
Rn×m, NMF seeks two nonnegative matrices X ∈ Rn×r and
Y ∈ Rm×r such that ∥XY T −M∥2F is minimized [1]. It is also
of interest to consider the symmetric case minX≥0 ∥XXT −M∥2F
where M ∈ Rn×n [2].
• Power allocation in wireless communications. In a wireless net-
work, each transmitter has a limited power budget which needs to
be optimized so that the sum achievable rate is maximized. Assume
there are K transmitters. This problem can be formulated as

max
p1,...,pK

K∑
k=1

log

(
1 +

|hkk|2pk∑
j ̸=k |hjk|2pj + σ2

k

)
(2)

s.t. 0 ≤ pk ≤ Pmax, ∀k = 1, . . . ,K, (3)

The first two authors contributed equally.

where hjk ∈ C denotes the interference channel fading from the jth
transmitter to the kth receiver and hkk ∈ C denotes the desired link
channel fading, σ2

k stands for the noise power at the kth receiver, and
Pmax is the maximum peak power.

1.1. Motivation

Algorithms that escape strict saddle points—stationary points that
have negative curvatures—gained a lot of interest recently. For ex-
ample, it was shown that when learning shallow networks, a noto-
riously nonconvex problem, the stationary points are either global
minimum or strict saddle points [3, 4]. Similar results were shown
that all saddle points are strict saddle points in tensor decomposition
[5], dictionary learning [6], phase retrieval [7], and a broad class of
low-rank matrix factorization problems [8]. These theoretical works
showed the landscape of the objective functions in these application-
s, and illustrated that escaping strict saddle points are paramount in
obtaining good solutions to these computationally hard problems.

A way of avoiding strict saddle points is to seek algorithms that
are guaranteed to converge to some properly defined second-order
stationary point (SS2), a point whose Hessian matrix does not have
any negative eigenvalue (in some subspace defined by the active con-
straint set).

1.2. State of the art

For unconstrained smooth problems, it has been shown that gradi-
ent descent (GD) converges to second-order stationary (SS2) points
with random initializations [9]. One way of finding negative cur-
vature is to occasionally add noise to the iterates. A perturbed ver-
sion of GD was proposed with convergence guarantees to SS2 points
[10], and the convergence rate is provably faster than the ordinary
gradient descent algorithm with random initializations. In a follow-
up work [11], the authors proposed NEgative-curvature-Originated-
from-Noise (NEON), and showed that the perturbed gradient descen-
t is essentially implementing the power method around the saddle
point so that a negative curvature of the Hessian matrix is extracted.
An accelerated version of NEON that adopts momentum methods to
extract the negative curvature, called NEON+, is proposed in [11] as
well. For block structured nonconvex problems, it has been shown
that perturbed alternating proximal point is also able to converge to
the SS2 points but with a faster rate compared with perturbed GD
numerically [12].

Despite the exciting developments, none of the existing methods
are able to incorporate constraints (as simple as bound constraints)
while preserving the advantages convergence property. In practical
machine learning and data mining problems, however, bound con-
straints are ubiquitous due to physical concerns. Examples include

5356978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

neural networks training with the nonnegative constraint [13], non-
negative matrix factorization (NMF) [1], nonnegative tensor factor-
ization [14], resource allocation in wireless networks [15], image
restoration, non-convex quadratic programming with box constraints
(QPB) [16], to name just a few. Existing work rely on second-order
information of the objective function to guarantee convergence to
a SS2 point [17, 18], including the trust region method [19], cu-
bic regularized Newton’s method [20, 21], and a mixed approach of
first-order and second-order methods [22]. The convergence rate of
second-order methods to SS2 points is only recently studied to han-
dle certain classes of constraints, such as quadratic ones [23]. Never-
theless, second-order methods are oftentimes unfavorable for large-
scale problems due to scalability issues. It is of pressing demand
to develop first-order methods for bound constrained problems with
provable convergence to an SS2 point.

1.3. Contributions of this work

In this paper, we propose a gradient-based algorithm, termed per-
turbed projected gradient descent (PP-GD). The core of PP-GD is
related to the interior descent algorithm, which updates the iterates
by the designed line search algorithm so that the objective value is
decreased either by exploiting the gradient of the objective function
or the negative curvature around strict saddle points without any pro-
jection operation.

The main contributions of this work are listed as follows:
1. To the best of our knowledge, this is the first algorithm that only

uses the gradient (first-order information) of the objective func-
tion such that it is guaranteed that the algorithm can converge to
some properly defined SS2 point under bound constraints.

2. We also provide a convergence rate analysis, showing that the
PP-GD algorithm converges to an SS2 point at a sublinear rate
with respect to the error, and only linearly scaled by the problem
dimension.

3. Numerical simulations demonstrate that the proposed algorithm
efficiently converges to SS2 points in terms of both the objective
value and the trajectory of the iterates.

2. PROPOSED ALGORITHM

In this section, we introduce the proposed first-order algorithm that
exploits both the projected and perturbed gradient descent algorithm-
s such that the active variables can be identified and free variables are
updated by either the gradient or negative curvature. We start by as-
suming that the objective function is gradient Lipschitz continuous
with constant L1 and Hessian Lipschitz continuous with constant
L2.

2.1. Principles of the Proposed Algorithm

In this algorithm, there is an important concept related to a set
F(x), which is defined as the following. Let set X be a compact
d-dimensional box, i.e., X = {x ∈ Rd|l ≤ x ≤ u}. We define

F(x) ,

z ∈ X|zi =


zi = li, if xi = li

zi = ui, if xi = ui

li < zi < ui, otherwise

 , (4)

as an open in-face that x belongs to. Variables xi that are strictly
li < xi < ui are called free variable and the remaining ones are
called active variables. Let S(x) be the set that contains free vari-
ables of x. Therefore, the dimension ofF(x) denoted by dim(F(x))
is same as the dimension of S(x) (i.e., the number of free variables).

When the box constraints are considered, we have the following
notations to distinguish the gradient of the free variables and the
active variables. Specifically, let

gP (x) = PX
(
x− 1

L1
∇f(x)

)
− x (5)

denote the projected gradient, where

PX (x) =


li, if xi ≤ li,

xi, if li < xi < ui,

ui, if xi ≥ ui,

(6)

and g(x) , gF (x) = PS(x)(∇f(x)) denote the gradient of the in-
active variables, meaning that PS(x)(∇f(x)) keeps the gradient of
the free variables and set the gradient of the active variables as 0. As-
sume that F(x) has at least one free variable. Define the (i, j)th en-
try of reduced Hessian HF (x) as the d×d matrix whose the (i, j)th
entry is the (i, j)th entry of∇2f(x) if both xi, xj are free variables
and the identity d× d matrix otherwise.

According to the definition of the second-order stationary con-
dition for constrained optimization problems [24, Proposition 3.3.2],
we define SS2 points for problem (1) as follows:
A point x∗ is an (ϵG, ϵH)-SS2 point of problem (1) if the following
conditions are satisfied.

∥gP (x∗)∥ ≤ ϵG and λmin(HF (x∗)) ≥ −ϵH (7)

where ϵG, ϵH > 0 are sufficiently small, and λmin(HF (x∗)) de-
notes the smallest eigenvalue of matrix HF (x∗). Note that if a point
x∗ only satisfies ∥gP (x∗)∥ ≤ ϵG, we call it an ϵG-first order station-
ary (SS1) point.

The details of implementing the algorithm are given in Algorith-
m 1, where r denotes the index of the iterates. The PP-GD algorithm
basically includes two parts, projected gradient descent and interior
descent algorithm, which will be fleshed out in the sequel.

Algorithm 1 Perturbed Projected Gradient Descent (PP-GD)
1: Input: x0, ϵG, ϵH , L1, L2, αP , T, f̄ , R, U, δ
2: for r = 0, 1, . . . do
3: if ∥gP (xr)∥ ≥ ϵG then
4:

xr+1 = PX (xr − αP∇f(xr)) (8)
5: else
6: [v(xr), flag] = NEON(xr, T, f̄ , R, U, δ) by Algorithm 2
7: if flag = ∅ or dim(F(xr)) = 0 then
8: Output xr

9: else ◃ flag = ♢ and dim(F(xr)) ≥ 1
10: Choose v(xr) such that g(xr)T v(xr) ≤ 0

11: if g(xr)T v(xr)− 1
2
ϵ′H ≥ −∥g(xr)∥ then

12: dr = −g(xr) ◃ Choose gradient direction
13: else
14: dr = v(xr) ◃ Choose negative curvature direction
15: end if
16: Compute xr+1 by the line search algorithm
17: end if
18: end if
19: end for

2.2. Projected Gradient Descent (PGD, shown in line 3–4)

PGD is implemented through line 3–4 of Algorithm 1 when the size
of the projected gradient is large. A constant stepsize is adopted
with 0 < αP ≤ 1/L1. This procedure guarantees that the objective
function is decreasing.

5357

2.3. Interior descent algorithm (IDA, shown in line 10–21)

In Algorithm 1, line 10–21 is called the interior descent algorith-
m, which handles the case when ∥gP (x)∥ is small. A new iterate
xr+1 generated by the remaining parts of the algorithm will be in
the closure of F(xr), i.e., xr+1 ∈ F(xr). In other words, after
an appropriate step-size is chosen by line search, iterates xr+1 will
always stay in the feasible set without any projection. Also, the inte-
rior algorithm only updates the free variables within the feasible set
while fixing the active variables on the boundaries. The direction of
the gradient and negative curvature (if exits) are both computed and
the choice of g(xr) or v(xr) is made on line 16, which is equivalent
to

− g(xr)T g(xr)

∥g(xr)∥ <
g(xr)T v(xr)

∥v(xr)∥ +
v(xr)THF (xr)v(xr)

∥v(xr)∥2 , (9)

since ∥v(xr)∥ = 1. The above equation shows that after normaliz-
ing the size of the direction, we choose the direction that gives more
descent of the objective value. To be more specific, the left-hand side
of (9) shows the descent of only using the gradient and the right-hand
side of (9) shows the one given by the negative curvature.

The interior descent algorithm includes three parts: NEON , line
search, and backtracking algorithms.

On the use of negative curvature (by NEON). The NEON algo-
rithm is a first-order method that can extract the negative curvature of
the (reduced) Hessian matrix around the strict saddle points efficient-
ly. The theoretical guarantees of the sequence generated by NEON
are restated as follows, where the details of implementing NEON are
shown in Algorithm 2. From [11, Theorem 2], we know that NEON
can obtain the negative curvature with high probability. Let x be a
point whose λmin(HF (x)) ≥ −ϵH . The theorem says that there
exits a constant cmax depended on c such that if NEON is called
with stepsize β = cmax/L1, T , cη/(βϵH), f̄ , βϵ3HL1/(L

2
2η

3),
R ,

√
βϵ2H/(

√
L1η

2), U , 4c(
√

βL1f̄
L2

)1/3, η , log(dL1/(ϵHδ))

and c ≥ 18, then with probability 1−δ it returns ♢ and a vector u ,
vT /∥vT ∥ such that uT∇2f(x)u ≤ − ϵH

8c2 log(dL1/(ϵHδ))
, −ϵ′H . If

NEON returns ∅, we can conclude that λmax(HF (x)) ≥ −ϵH with
probability 1 − O(δ). By leveraging NEON , we can to obtain an
approximate negative value ϵ′H and the corresponding eigenvector u
within a finite number of steps if there exits λmin(HF (x)) ≥ −ϵH .

Remark 1. Note that the obtained eigenvector here v(xr) is
orthogonal to the space spanned by CF (xr)T where CF (xr) ,
[. . . , ei, . . .], ∀i ∈ I(xr) and ei denotes the standard basis and
I(xr) denotes the index set of S(xr) (see [24, Proposition 3.3.2]).

Remark 2. If the dimension of the reduced Hessian matrix is very
small at some iteration, e.g., dim(F(xr)) ≤ d

1
3 , we can implement

the eigenvalue decomposition directly.

On the use of the line search and backtracking algorithms.
Line search algorithm is exploited here for keeping the free variable
updated with the feasible set. Specifically, let αr

max , max{α ≥
0|[xr, xr + αdr] ∈ X} and choose xr+1 = xr + αr

maxd
r . If

f(xr+1) < f(xr), then the algorithm returns xr+1 (in this case,
the iterate is very close to the boundary.). Otherwise, the algo-
rithm will call backtracking algorithm by α ← αmax to obtain a
sufficient descent. Note that when αr

max is chosen, we will have
xr+1 /∈ F(xr).

Backtracking algorithm is used for finding a α such that iterates
xr+1 will be stayed in the feasible set without any projection opera-
tion. If f(xr+αdr) > f(xr)+λρ(α), we will implement α← 1

2
α

until a sufficient descent is satisfied (see Lemma 2 and Lemma 3).

Algorithm 2 NEON (Finding Negative Curvature)
1: Input: xr, T, f̄ , R, U, δ
2: Generate vector y randomly from the sphere of an Euclidean ball of ra-

dius R and initialize v0 = PS(xr)(y).
3: for τ = 0, 1, . . . , T do
4:

vτ+1 = vτ − β(g(xr + vτ)− g(xr)) (10)
5: end for
6: if f(xr +vT)−f(xr)−g(xr)T vT ≤ −2.5f̄ where ∥vT ∥ ≤ U then
7: return [vT /∥vT ∥,♢]
8: else
9: return [0, ∅]

10: end if

Here, ρ(α) = −α∥g(xr)∥2 if dr = −g(xr) and ρ(α) = −α2ϵ′H/4
if dr = v(xr). Without loss of generality, we can choose λ = 0.5
in this paper.

3. CONVERGENCE ANALYSIS

The convergence analysis will be given in this section, which shows
that PP-GD converges to SS2 points in a finite number of steps. In
Algorithm 1, it can be observed that dr could be chosen by gradi-
ent∇f(xr), projected gradient g(xr) and negative curvature v(xr).
Using the line search algorithm ensures that the iterates stay in the
feasible set. When αr

max is chosen, the objective function will not in-
crease. When αr

max is not chosen, we will have a sufficient descent.
We will give the following three lemmas that quantify the minimum
decrease of the objective value by implementing one step of the algo-
rithm, i.e., xr+1 = xr +αrdr . They serve as the stepping stones for
the main result that follows. The details of the proof will be given in
the journal version.
Lemma 1. If xr+1 is computed by projected gradient descent with
step-size chosen by 0 < αP ≤ 1

L1
, then f(xr+1) ≤ f(xr)− L1

2
ϵ2G.

Lemma 2. If dr is chosen by −g(xr) and xr+1 is computed by
the interior descent algorithm of Algorithm 1, then there exits an
α ≥ 1/(2L1) such that f(xr+1) ≤ f(xr)− 3L1

8
ϵ′2H .

Lemma 3. If dr is chosen by v(xr) and xr+1 is computed by the
interior algorithm of Algorithm 1, then there exits an α ≥ 9/(4L2)
and f(xr+1) ≤ f(xr)− 1.5L2

2ϵ
′
H with high probability .

Since the designed algorithm can sufficient descent of the objec-
tive value with high probability, by applying the Boole’s inequality
(a.k.a. union bound) we can give the following convergence rate re-
sult of the proposed algorithm immediately.
Theorem 1. (Convergence rate) Suppose the objective function sat-
isfies assumption A. The sequence {xr} generated by Algorithm 1
satisfies optimality condition (7) in the following number of itera-
tions with high probability.

Õ

 d(f(x0)− f⋆)

min
{

L1ϵ
2
G

2
,
3L1ϵ

′2
H

8
, 1.5L2

2ϵ
′
H

}
 (11)

where f⋆ denotes the global minimum value of the objective function
and Õ hides the number of iterations run by NEON .

Remark 3. NEON in Algorithm 1 is not needed for every step.
Also, the accelerated version of NEON (i.e., NEON +) can be used
such that we can have a faster convergence rate of PP-GD.

Remark 4. The proposed algorithm can be also applied to deal
with general linear constraints, which will involve more complicated
projection operators and convergence analysis. Due to the page limit,
this part is not included in this paper.

5358

4. ILLUSTRATIVE EXAMPLE

In this part, we use simulations to verify our theoretical results in
various scenarios. The results are based on a construction example.
The objective function f(x) takes the form of “kelp” as given in the
following

f(x) = (x2
1 + x2

2) sin(πx1) (12)

where the constraint set is X = {−1.5 ≤ x1 ≤ 0.3,−2 ≤ x2 ≤ 2}.
The general landscape of the “kelp” function. The general land-
scape of the construction function f(x) is shown in Figure 1. The

x1

x2

f
(x
)

SS1

SS2

x1

x
2

SS1

SS2

Fig. 1. Landscape and contour with negative gradient flow of f(x).

f(x) is a 2-dimensional function and is symmetric with respect to
x2 = 0. There is one SS1 on x2 = 0 shown by the blue aster in
Figure 1 and we denote it by xSS1 = (xSS1

1 , 0). There are three SS2s
denoted by the red asters in Figure 1. One SS2 is in the interior of
X and is given by xSS2

int = (0, 0). The other two are on the boundary
which are denoted by xSS2

bd,− = (xSS2
bd,1,−2) and xSS2

bd,+ = (xSS2
bd,1,+2).

Let “conv.” denote the shortcut of converging. The trajectories
of iterations on the contour maps and the rate of convergence will be
presented in the following figures.
Case 1: Escaping the strict saddle point. As shown in Figure 2, we
initialize PGD and PP-GD at xcase1 = (−1.3, 0). It can be observed
that PGD finally converges to the SS1 (xSS1). PP-GD, however, first-
ly “lingers” at the SS1 (xSS1) for some time, but finally escapes this
point and converges to an SS2 (xSS2

bd,+).
Another interesting observation is that since PP-GD can exploit

the second-order information of f(x), it obtains a faster convergence
rate during the convergence stage from xcase1 to xSS1.

x1

x
2

Init. point

PGD

PP-GD
conv. point of PGD

conv. point of PP-GD

number of iteration

o
b
je
ct
iv
e
va
lu
e

PGD

PP-GD

Fig. 2. Convergence comparison of PGD and PP-GD on Case 1.

Case 2: A faster convergence rate of PP-GD over PGD. As a
continuing example of Case 1, to further look into the faster con-
vergence property of PP-GD, in Figure 3, the two algorithms are
initialized at xcase2 = (−1.3, 0.6). Notice that in the first several
steps, PP-GD takes the same steps as PGD. About after the 10th iter-
ation, PP-GD achieves a faster convergence rate since PP-GD starts
to use the second-order curvature information of f(x) to choose the
descent direction. But, PGD is still taking the gradient (first-order)
descent direction. Although PGD has a similar convergence rate as
PP-GD theoretically, this result illustrates that PP-GD in practice can
be expected to give a faster convergence result than PGD.

x1

x
2

Init. point

PGD

PP-GD
conv. point of PGD

conv. point of PP-GD

number of iteration

o
b
je
ct
iv
e
va
lu
e

PGD

PP-GD

Fig. 3. Convergence comparison of PGD and PP-GD on Case 2.

Case 3: SS1 on the boundary with the perpendicular negative
curvature. As another continuing example of Case 1, we look
into a “hard” case where SS1 is restrained on the boundary. In Figure
4, PP-GD and PGD are still initialized at xcase1 = (−1.3, 0), but we
shrink X to be a more restrained space given by XH = {−1.5 ≤
x1 ≤ 0.3 and − 2 ≤ x2 ≤ 0} ⊂ X . The set X {

H = X \ XH is
denoted as the reddish area in Figure 4. Unlike Case 1 in Figure 2,
both PP-GD and PGD are finally stuck at the SS1 (xSS1). In fact,
as shown in Algorithm 1, for this “hard” case, the algorithm PP-GD
cannot succeed in escaping from SS1 to SS2.

x1

x
2

Init. point

PGD

PP-GD
conv. point of PGD

conv. point of PP-GD

number of iteration

o
b
je
ct
iv
e
va
lu
e

PGD

PP-GD

Fig. 4. Convergence comparison of PGD and PP-GD on Case 3.
Case 4: SS1 on the boundary that can be escaped. Continuing
Case 3, we can further examine what will happen if we initialize
the PP-GD and PGD algorithms with SS1 (xSS1) by considering the
shrunken set XV = {xSS1

1 ≤ x1 ≤ 0.3 and − 2 ≤ x2 ≤ 0} ⊂ X .
In this case, SS1 is still located on the boundary of the set. Since a
negative curvature can be found by PP-GD, similar to Case 1, PP-
GD can finally converge to SS2 (xSS2

bd,+), while PGD cannot move at
the SS1. This result is shown in Figure 5.

x1

x
2

Init. point

PGD

PP-GD
conv. point of PP-GD

100 101 102 103

number of iteration

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

ob
je

ct
iv

e
va

lu
e

PGD
PP-GD

Fig. 5. Convergence comparison of PGD and PP-GD on Case 4.

5. CONCLUSION AND FUTURE WORK

In this work, we have proposed the perturbed projected gradient de-
scent (PP-GD) algorithm for bound constrained nonconvex problem-
s, and we have shown that it is guaranteed to converge to a second-
order stationary (SS2) point with a sublinear rate. In the upcoming
journal version, we will provide detailed proof for the convergence
result, as well as applications to the aforementioned NMF and pow-
er allocation problems in machine learning and signal processing to
showcase the superiority of the proposed PP-GD.

5359

6. REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, no. 6755,
pp. 788, 1999.

[2] S. Lu, M. Hong, and Z. Wang, “A nonconvex splitting method
for symmetric nonnegative matrix factorization: Convergence
analysis and optimality,” IEEE Transactions on Signal Process-
ing, vol. 65, no. 12, pp. 3120–3135, June 2017.

[3] K. Kawaguchi, “Deep learning without poor local minima,” in
Proceedings of Neural Information Processing Systems (NIPS),
2016, pp. 586–594.

[4] M. Soltanolkotabi, A. Javanmard, and J. D. Lee, “Theoretical
insights into the optimization landscape of over-parameterized
shallow neural networks,” IEEE Transactions on Information
Theory, 2018.

[5] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from sad-
dle points — online stochastic gradient for tensor decomposi-
tion,” in Proceedings of Annual Conference on Learning Theo-
ry (COLT), 2015, pp. 797–842.

[6] J. Sun, Q. Qu, and J. Wright, “When are nonconvex problems
not scary?,” in Proceedings of NIPS Workshop on Noncon-
vex Optimization for Machine Learning: Theory and Practice,
2015.

[7] J. Sun, Q. Qu, and J. Wright, “A geometric analysis of phase
retrieval,” arXiv:1602.06664 [cs.IT], 2017.

[8] R. Ge, C. Jin, and Y. Zheng, “No spurious local minima in non-
convex low rank problems: A unified geometric analysis,” in
Proceedings of International Conference on Machine Learning
(ICML), 2017, pp. 1233–1242.

[9] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gra-
dient descent only converges to minimizers,” in Proceedings
of Annual Conference on Learning Theory (COLT), 2016, pp.
1246–1257.

[10] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan,
“How to escape saddle points efficiently,” in Proceedings of
International Conference on Machine Learning (ICML), 2017,
pp. 1724–1732.

[11] Y. Xu and T. Yang, “First-order stochastic algorithms for escap-
ing from saddle points in almost linear time,” in Proceedings
of Neural Information Processing Systems (NIPS), 2018.

[12] S. Lu, M. Hong, and Z. Wang, “Fast and global optimal non-
convex matrix factorization via perturbed alternating proximal
point,” in Proceedings of the 44th IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (ICASSP),
2019.

[13] J. Chorowski and J. M. Zurada, “Learning understandable
neural networks with nonnegative weight constraints,” IEEE
Transactions on Neural Networks and Learning Systems, vol.
26, no. 1, pp. 62–69, Jan. 2015.

[14] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for sig-
nal processing and machine learning,” IEEE Transactions on
Signal Processing, vol. 65, no. 13, pp. 3551–3582.

[15] S. Lu and Z. Wang, “Training optimization and performance
of single cell uplink system with massive-antennas base sta-
tion,” IEEE Transactions on Communications, vol. 67, no. 2,
pp. 1570–1585, Feb. 2019.

[16] S. Burer and A. N. Letchford, “On nonconvex quadratic pro-
gramming with box constraints,” SIAM Journal on Optimiza-
tion, vol. 20, no. 2, pp. 1073–1089, 2009.

[17] R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt,
“Second-order negative-curvature methods for box-constrained
and general constrained optimization,” Computational Opti-
mization and Applications, vol. 45, no. 2, pp. 209–236, 2010.

[18] C. W. Royer and S. J. Wright, “Complexity analysis of second-
order line-search algorithms for smooth nonconvex optimiza-
tion,” SIAM Journal on Optimization, vol. 28, no. 2, pp. 1448–
1477, 2018.

[19] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust region
methods, SIAM, 2000.

[20] Y. Nesterov and B. T. Polyak, “Cubic regularization of Newton
method and its global performance,” Mathematical Program-
ming, vol. 108, no. 1, pp. 177–205, 2006.

[21] Y. Carmon and J. C. Duchi, “Gradient descent efficiently finds
the cubic-regularized non-convex Newton step,” in Proceed-
ings of NIPS Workshop on Nonconvex Optimization for Ma-
chine Learning: Theory and Practice, 2016, [arXiv preprint
arXiv:1612.00547].

[22] S. J. Reddi, M. Zaheer, S. Sra, B. Póczos, F. Bach, R. Salakhut-
dinov, and A. J. Smola, “A generic approach for escaping sad-
dle points,” in Proceedings of the 21st International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2018,
pp. 1230–1242.

[23] A. Mokhtari, A. Ozdaglar, and A. Jadbabaie, “Escaping saddle
points in constrained optimization,” in Proceedings of Neural
Information Processing Systems (NIPS), 2018.

[24] D. P. Bertsekas, Nonlinear Programming, 2nd ed, Athena
Scientific, Belmont, MA, 1999.

5360

		2019-03-18T11:19:05-0500
	Preflight Ticket Signature

