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ABSTRACT

The problem of deciding whether a given set of data points forms
one cluster or two clusters is investigated from a robust hypothesis
testing perspective. It is assumed that a clustering algorithm exists
that for both cases calculates cluster assignments and estimates of
the corresponding probability density functions. Based on the latter,
a statistical hypothesis test for the true number of clusters is for-
mulated. In order to take falsely labeled data points into account,
the clusters are then modeled as being contaminated with outliers.
This leads to an uncertainty model for the cluster densities of the
ε-contamination type, whose corresponding minimax optimal robust
detector is well-known and can be implemented using least favorable
densities. The performance of this detector under cluster overlap,
cluster imbalance, and for different contamination ratios is evaluated
numerically and is compared to that of a Bayesian cluster enumera-
tion criterion. Significant performance improvements are shown in
all cases.

Index Terms— Clustering, Cluster Enumeration, Cluster Anal-
ysis, Rubust Detection

1. INTRODUCTION

A major challenge in cluster analysis is that the number of data
clusters is usually unknown. The estimation of the number of clus-
ters, also called cluster enumeration, has been intensively researched
[1–17]. Generally speaking, enumeration approaches may be loosely
grouped into two categories. The first category constructs cluster va-
lidity indices, such as [6–9] which estimate the number of clusters by
measuring the compactness and separation of the clusters. The sec-
ond category uses criterion functions under a probabilistic mixture-
model framework, such as [5,11,15] that trade off model complexity
and data fit.

Typical challenges for cluster enumeration include cluster over-
lap and cluster imbalance [2, 5]. For example, a cluster enumer-
ation criterion may not provide a reliable decision for any of the
candidate models, which can lead to over-segmentation or under-
segmentation. For such scenarios, we propose a robust detector that
can be used for a subsequent cluster verification and refinement.
More precisely, we design a minimax optimal robust hypothesis test
under ε-contamination to decide whether the data forms one or two
clusters.

The reasons for focusing on the two cluster case are twofold.
First, the two cluster case can be considered an atomic building
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block, based on which more complex and powerful, e.g., hierarchi-
cal algorithms can be designed. Second, limiting the analysis to two
clusters allows for building upon existing results in minimax robust
detection and forgo complications that arise with robust hypothesis
tests for multiple hypotheses. From a practical viewpoint, the pro-
posed robust detector can be used as a tool to improve and verify the
results of a given clustering method. For example, cluster overlap
can lead to falsely labelled data points in the overlapping region be-
tween two clusters. Being designed explicitly for this kind of uncer-
tainty, the robust detector is able to deal with mislabeled data points
and shows promising performance, even for severe overlap. On the
other hand, in the presence of cluster imbalance, the proposed detec-
tor may be used to decide if a small partition in the data is actually a
separate cluster, or if it should be fused with a nearby larger cluster.

The proposed robust detector for cluster analysis is detailed in
Section 2. The use-cases of cluster overlap and cluster imbalance are
investigated via numerical experiments and a real-world example in
Section 3. Possible extensions are discussed in Section 4, which also
concludes the paper.

2. PROPOSED ROBUST DETECTOR FOR CLUSTER
ANALYSIS

Let X = {x1, . . . ,xN} ∈ ΩN , with N > 1, be a set of obser-
vations which contains K0 clusters. We assume that a clustering
algorithm is given that takes the set X and a positive integer K as
input arguments and outputs
• K independent and non-empty clusters X1:K , . . . ,XK:K that

satisfy
⋃K

k=1 Xk:K = X and Xk:K ∩Xj:K = ∅ for all k 6= j.
• K estimates p̂1:K , . . . , p̂K:K of the density functions that are

assumed to have generated the observations in the respective
clusters.

Based on the estimated densities p̂k:K , statistical hypotheses about
the true number of clusters can be formulated1 as

HK : p(X ) =

K∏
k=1

p̂k:K(Xk:K), (1)

where K ranges from one to a maximum number of clusters that is
determined by the test designer. We assume that the true number
of clusters K0 lies within the range of considered clusters. For the
special case considered in this paper, namely testing whether the data
forms one or two clusters, the hypotheses in (1) become

H1 : p(X ) = p̂1:1(X1:1),

H2 : p(X ) = p̂1:2(X1:2)p̂2:2(X2:2).
(2)

1Formulating the hypotheses in terms of estimated/empirical distributions
is a shorthand notation that is used for compactness. More accurately, hy-
potheses are formulated in terms of the true distributions, which are un-
known, so that they need to be estimated from the data in an additional step.
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Since the hypotheses in (2) are simple, the optimal test for H1

against H2, in the sense of Neyman and Pearson, is a likelihood
ratio test of the form

δ2(X ) =


0, l(X ) < λ

κ, l(X ) = λ

1 l(X ) > λ

, (3)

where δ2 : ΩN → [0, 1] denotes the probability of accepting H2,
given the observations X , l : ΩN → R denotes the log-likelihood
ratio

l(X ) = log
p̂1:2(X1:2)p̂2:2(X2:2)

p̂1:1(X1:1)
, (4)

λ ∈ R denotes the decision threshold, and the randomization κ ∈
[0, 1] can be chosen arbitrarily.

The problem that arises when implementing the above test in a
straightforward manner is the following: while the estimate for p̂1:1
is based on a trivial, unambiguous cluster assignment, the estimates
p̂1:2 and p̂2:2 are based on potentially erroneous cluster assignments.
That is, p̂1:2 and p̂2:2 are subject to more uncertainty than p̂1:1. Pro-
cedures that do not take this uncertainty imbalance into account are
bound to overestimate the likelihood of H1, i.e., they are biased
towards the single cluster hypothesis, especially when the clusters
overlap. This effect can be seen in the Bayesian information crite-
rion (BIC) in [5] as well as in the non-robust test introduced above
and is illustrated with simulated and real-data examples in Section 3.

Naturally, there are various options to take the additional un-
certainty under H2 into account. For example, one could robustify
the estimators used to obtain p̂1:2 and p̂2:2 so as to reduce the influ-
ence of erroneously assigned observations on the estimated distribu-
tions [18, 19]. However, the estimators are often tightly interlinked
with the clustering algorithm so that one cannot be changed without
affecting the other. The approach proposed here avoids this prob-
lem by not trying to robustify the estimators, but the subsequent test.
More precisely, from a detection point of view, incorrectly assigned
data points can be interpreted as observations that were drawn from a
different distribution. That is, observations that were erroneously as-
signed toX1:2 are not drawn from P̂1:2, but from P̂2:2 and vice versa.
In robust statistics, this type of corruption in a data set is known as
ε-contamination, where ε is referred to as contamination ratio. It
defines the fraction of observations that are assumed to be outliers,
which here corresponds to the fraction of misassigned observations
in the clusters.

A minimax optimal hypothesis test under ε-contamination is de-
signed by replacing the nominal densities, in this case p̂1:2 and p̂2:2,
with the least favorable densities, here denoted by q̂1:2 and q̂2:2. In a
nutshell, the latter are obtained by maximizing the error probabilities
with respect to the distributions from which the outliers are assumed
to be drawn. The robust test is then designed such that it achieves
the best possible error probabilities under the worst possible outlier
distributions; see [20, 21] for details.

The detector proposed in this paper is based on the same design
principle, but with an important difference. Since the cluster under
H1 does not contain misassigned observations, it is not affected by
outliers. Consequently, the least favorable distributions are not those
that maximize the probability of confusing H1 and H2, but those
that maximize the probability of confusing the two clusters under
H2.

Following the arguments detailed in [21], the least favorable
densities can be shown to be of the form

q̂1:2(x) = max
{
c1p̂2:2(x) , (1− ε1)p̂1:2(x)

}
,

q̂2:2(x) = max
{
c2p̂1:2(x) , (1− ε2)p̂2:2(x)

}
,

(5)

where the maximum is taken element-wise, ε1, ε2 denote the con-
tamination ratios, and c1, c2 need to be chosen such that q̂1:2 and
q̂2:2 are valid densities, i.e., they integrate to one. The correspond-
ing robust test for H1 against H2 is then given by the decision rule
in (3), where the nominal log-likelihood ratio in (4) is replaced by
the robust log-likelihood ratio

l(X ) = log
q̂1:2(X1:2)q̂2:2(X2:2)

p̂1:1(X1:1)
. (6)

In the next section, the reliability of this detector is evaluated numer-
ically under different assumptions and scenarios.

3. NUMERICAL RESULTS

In this section, several examples are shown which provide a proof-
of-concept that robust detection can be a useful tool in cluster ver-
ification and enumeration. The scenarios are deliberately kept sim-
ple in order to allow isolating the effects of different parameters on
the detection performance. A more rigorous performance analysis
is beyond the scope of this paper and will be the subject of a future
publication.

The proposed detector needs to be paired with a clustering algo-
rithm that provides estimates of the clusters and their associated den-
sities. Here, the clustering method detailed in [5] is used, which is
a state-of-the-art approach based on expectation maximization (EM)
[22]. Moreover, the BIC derived in [5] provides a reference method
against which the proposed detector is compared. The BIC [5] for-
mulates the problem of estimating the number of clusters in a data
set as the maximization of the posterior probability of the candidate
models.

All results presented in this section were obtained via Monte
Carlo simulations using 1000 runs. The simulation setup is as fol-
lows: under H2, the observations are generated by independently
drawing N1 = |X1:2| samples from a bivariate (Ω = R2) Gaus-
sian distribution with mean µ1:2 and covariance Σ1:2 and drawing
N2 = |X2:2| samples from a Gaussian distribution with mean µ2:2

and covariance Σ2:2. Under H1, the observations are generated by
drawing N = N1 +N2 samples from a single Gaussian distribution
with mean

µ1:1 = α1µ1:2 + α2µ1:2 (7)

and covariance
Σ1:1 = Φ1:1 − µ1:1µ

T
1:1, (8)

where α1 = N1/N , α2 = N2/N , and

Φ1:1 = α1

(
Σ1:2 + µ1:2µ

T
1:2

)
+ α2

(
Σ2:2 + µ2:2µ

T
2:2

)
. (9)

That is, the mean and covariance of p̂1:1 are chosen such that they
match the mean and covariance of α1p1:2 + α2p2:2. Note that the
bivariate Gaussian distribution is used merely for simplicity; both the
clustering algorithm and the proposed detector extend to the multi-
variate case and to non-Gaussian distributions.

Throughout the section, the empirical probability of correctly
detecting the presence of a second cluster is referred to as detection
rate and the empirical probability of incorrectly detecting a second
cluster is referred to as false alarm rate.

3.1. Cluster overlap

The purpose of the first experiment is to asses how well overlapping
clusters can be identified by the robust detector. To this end, the

5332



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Alarm Rate

D
et

ec
tio

n
R

at
e

d = 3.2

d = 2.8

d = 2.4

d = 2.0

d = 1.6

Fig. 1. ROCs of the proposed detector for different cluster center
distances.

Cluster Center Distance d

3.2 2.8 2.4 2.0 1.6

False Alarm Rate 1 % 0.2 % 0.7 % 0.7 % 0.6 %

Detection Rate 5.9 % 0.5 % 0.0 % 0.1 % 0.3 %

Table 1. False alarm and detection rates of the BIC in [5] for differ-
ent cluster center distances.

cluster means underH2 are parametrized as

µ1:2 = −µ2:2 =
[
d/2 0

]T
, (10)

where d determined the distance between the cluster centers and in
turn the cluster overlap. Both clusters are assumed to be white and
of unit covariance. That is, Σ1:2 = Σ2:2 = I , and the number of
samples per cluster is set to N1 = N2 = 100.

In Fig. 1, the receiver operating characteristic (ROC) of the pro-
posed detector with ε1 = ε2 = 0.3 is shown for different degrees of
cluster overlap. By inspection, the detection performance is excel-
lent for small overlaps, but deteriorates for large overlaps. In order to
get an idea of how large the overlap in the different scenarios really
is, two representative examples for observations under H1 and H2

with d = 2.4 are shown in Fig. 2. As can be seen, the point clouds
are highly similar and there is considerable overlap between the two
clusters in the lower plot. Nevertheless, for d = 2.4, the proposed
detector is able to reliably separate the clusters, with detection rates
at around 80 % for false alarm rates of 10 %.

The BIC, in contrast, shows a strong bias towards the single clus-
ter hypothesis. That is, while it admits very low false alarm rates, it
does not reliably detect the presence of a second cluster. This can
be seen in Table 1, where false alarm rates and detection rates of
the BIC are listed for different degrees of cluster overlap. Even for
the case d = 3.2, for which the clusters can be separated almost
perfectly by the robust detector, the BIC does not achieve detection
rates above 5 %. This observation confirms the theoretical consider-
ations in the previous section. However, it should also be highlighted
that the clusters in this example are particularly difficult to separate
using a Gaussian BIC since Gaussian distributions fit the data well
under both hypotheses.
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Fig. 2. Representative example of observations under H1 (top) and
H2 (bottom) with cluster centers at [±1.2 0]T.

Cluster Imbalance N1/N2

1 2 3 4 5

False Alarm Rate 0.2 % 0.8 % 0.9 % 0.7 % 0.8 %

Detection Rate 0.5 % 0.4 % 3.3 % 6.4 % 9.3 %

Table 2. False alarm and detection rates of the BIC in [5] for differ-
ent degrees of cluster imbalance.

3.2. Cluster imbalance

Besides the cluster overlap, the cluster imbalance, i.e., the difference
in the number of cluster elements, has been shown to have a strong
effect on the cluster enumeration [2, 5]. Therefore, in the second
experiment, the ratio of observations per cluster, N1/N2, is varied
from 1 to 5, while N = 200, d = 2.8, and ε1 = ε2 = 0.3 are held
constant. The corresponding ROCs are depicted in Fig. 3. The loss
in performance caused by an increasing cluster imbalance is clearly
visible. However, for moderate cluster imbalances (N1/N2 ≤ 3),
the two hypotheses can still be separated with a high reliability.
Since for d = 2.8 there also is a significant cluster overlap, these
results are promising overall, especially compared to the BIC, whose
detection and false alarm rates are given in Table 2. Interestingly, the
detection rate of the BIC increases with the cluster imbalance. This
effect is attributed to the difference in the structure of the clusters
when there is cluster imbalance. In such cases the proposed detector
might not be superior to the BIC anymore.

3.3. Contamination ratio

So far, the contamination ratios ε1, ε2 have been kept fixed at a
value of 0.3, which corresponds to 30 % erroneously assigned ob-
servations per cluster. Our experiments suggest that, without prior
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Fig. 3. ROCs of the proposed detector for different degrees of cluster
imbalance.
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Fig. 4. Detection rates of the proposed detector vs. contamination
ratio for different false alarm rates.

knowledge about the structure of the clusters, this value leads to an
overall good performance. However, if prior knowledge is available,
it can be used to further improve the detection rates. This is illus-
trated in Fig. 4, where the detection rate of the proposed detector
is plotted vs. the contamination ratio for different false alarm rates
and d = 2.4, N1 = N2 = 100. For all depicted false alarm rates,
the beneficial effect of taking the possibility of outliers into account
in the test design is clearly visible, with the best robust test achiev-
ing detection rates roughly 10 % higher than that of the non-robust
detector (ε1 = ε2 = 0). The detection rates reach a maximum be-
tween contamination rates of approximately 0.2 and 0.3. On the one
hand, this shows that there is indeed a risk of over-robustification.
On the other hand, the relatively flat performance profiles show that
the choice of the contamination ratios is not critical, as long as they
stay within an appropriate interval.

3.4. Iris flower data set

The final experiment is to apply the proposed robust detector to a
real-world data set, namely the iris flower data set introduced by
Fisher [23, 24]. Here only two types of iris flowers and two features
are considered, namely the sepal and the petal widths. The two clus-
ters are depicted in the upper plot of Fig. 5, where a moderate cluster
overlap can be seen.
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Fig. 5. Example of two clusters based on two features from the iris
flower data set. The true clusters are shown in the upper plot, the
clusters estimated by the EM algorithm [5] in the lower plot.

Applying the proposed detector with ε1 = ε2 = 0.3 to the data
set yields a log-likelihood ratio of approximately 40 in favor of the
two cluster case. For reasonably chosen thresholds, this corresponds
to a correct detection. For comparison, in order to separate the clus-
ters shown in Fig. 2 with a false alarm rate of 5 %, the log-likelihood
ratio threshold needs to be set to λ ≈ 22.

As expected, on this reduced set of features, the BIC decides in
favor of a single cluster. (Using all available features, the clusters are
recognized correctly by the BIC [5].) Interestingly, the underlying
EM algorithm does separate the two clusters with a reasonably high
accuracy; compare the upper and lower plot in Fig. 5. This discrep-
ancy highlights the need for reliable cluster enumeration methods,
even in cases with little cluster overlap or imbalance.

4. CONCLUSIONS AND POSSIBLE EXTENSIONS

The results presented in the previous section provide evidence that
robust detection can be a useful tool for cluster verification and enu-
meration. A natural extension is to consider the case of multiple
clusters, which in turn requires the use of robust detectors for multi-
ple hypotheses. This extension is non-trivial and will be investigated
in a future publication. In the bigger picture of things, however,
we do not see robust detection as a competitor to existing cluster
enumeration methods, but rather as a complement. In practice, one
needs to be able to efficiently handle high-dimensional data sets and
a large numbers of clusters so that an enumeration purely based on
robust detection is likely to be too complex to be useful. However,
robust detectors might be able to resolve cases where the outcomes
of traditional cluster enumeration methods are inconclusive or unre-
liable. Exploring this symbiosis is another promising area for future
research.
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