
ROBUST LINEAR DISCRIMINANT ANALYSIS USING TYLER’S ESTIMATOR:
ASYMPTOTIC PERFORMANCE CHARACTERIZATION

Nicolas Auguin?, David Morales-Jimenez†, Matthew R. McKay?

?Hong Kong University of Science and Technology, ECE Department, Hong Kong
†Queen’s University Belfast, ECIT Institute, Belfast, United Kingdom

ABSTRACT

We consider a robust version of regularized discriminant
analysis (RDA) classifiers to account for potential spurious
or mislabeled observations in the training data set. To build
a robust discriminant rule, a robust estimation of the covari-
ance matrix is essential. In this work, we propose to use a
regularized version of Tyler’s covariance estimator, in the
regime where both the number of variables and the number
of training samples are large and of similar order. Building
upon fundamental results from random matrix theory, we
show that the robust classifier is asymptotically equivalent
to traditional, non-robust classifiers when the training data is
free from outliers. Simulations on synthetic and real datasets
confirm our theoretical observations and further attest to the
benefits brought by the robust classifier when the data is
corrupted by outliers.

Index Terms— Robust estimation, covariance matrices,
linear discriminant analysis

1. INTRODUCTION
Discriminant analysis is a common classification method
used in statistics, machine learning, and pattern recognition
to identify the combination of features that best separate a
number of classes of events or objects [1]. Discriminant
analysis belongs to the wide class of parametric classifica-
tion methods [2], which assume that the data follows a cer-
tain distribution (for example, a Gaussian mixture model).
Based on labeled data, from which estimates of the class
means and covariance matrices are obtained, a discrimina-
tion rule is learned, which is then used to determine the class
which an unseen data sample most likely pertains to.

When dealing with real data sets, it is often the case that
the number of variables is of the same order as (or even larger
than) the number of available samples. In such cases, classi-
cal estimators of covariance matrices like the sample covari-
ance matrix (SCM) typically fail. To solve this issue, regu-
larized versions of discriminant analysis have been proposed
[3], based on regularized versions of the SCM. Regularized
discriminant analysis has since then established itself as the
go-to choice in practice. In a series of recent works [4, 5],
RDA has been studied from a random matrix theory perspec-
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tive. Specifically, when the number of variables and the num-
ber of samples grow large at the same rate, an asymptotic
equivalent of the classification error has been found, shed-
ding some light on the influence of the data model on the
performance of RDA.

A common problem arising in discriminant analysis is
the fact that the data, although assumed to arise from a Gaus-
sian mixture model, is often not Gaussian: data samples may
instead follow a heavy-tailed distribution, or some of the
training samples may be outliers, the origin of which can be
diverse (for a review, see [6]). This is a critical issue in prac-
tice; as the discriminant rule learned from the training data
necessitates the estimation of the covariance matrix of the
data, when outliers are present and/or if the data is not Gaus-
sian, using a simple estimate like the sample covariance ma-
trix can lead to underwhelming results. It is then natural to
aim for a robust estimation of the covariance matrix. In this
work, we consider a regularized version of Tyler’s estimator
of covariance, proposed in [7, 8], and we study the asymp-
totic performance of the associated discriminant rule in the
context of linear discriminant analysis (LDA). To do so, we
build on a series of recent works concerned with the perfor-
mance analysis of RDA [4, 5] and the asymptotic behavior
of Tyler’s estimator [9, 10]. We first demonstrate that, when
no outliers are present in the data, there is no performance
loss when using regularized Tyler’s estimator rather than the
regularized SCM (RSCM). We then validate this observa-
tion with simulations on synthetic data and on the MNIST
dataset. It is also shown empirically that, when the data is
corrupted by a certain type of outliers, there is a clear benefit
in using this robust estimator rather than the RSCM.

Notation: The superscript T means transpose. trA rep-
resents the trace of the matrix A. ||.|| denotes the Euclidean
norm for vectors and the spectral norm for matrices. Φ(·)
denotes the cumulative density function of the standard nor-
mal distribution. The arrow a.s.−−→ designates the almost sure
convergence of a random variable.

2. DISCRIMINANT ANALYSIS
2.1. Model
In discriminant analysis, a discriminant rule is determined
so as to decide to which class a given (unseen) data vector
most likely belongs. Such rule is built based on an available
training data set composed of n samples pertaining to, say, 2
classes, C0, C1. Assume that the ni > 0 observations from
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class Ci are independent and sampled from a multivariate
Gaussian distribution with mean µi ∈ RN×1 and covariance
matrix Σ ∈ RN×N , with Σ � 0.

The linear discriminant rule consists in assigning a new
(test) measurement x to class Ck if

k = argmin
i∈{0,1}

{
(x− µi)

TΣ−1(x− µi)− logπ
(n)
i

}
, (1)

with π(n)
i , ni

n the a priori probability of class Ci.The LDA
rule therefore assigns the label 0 to observation x if P(x|x ∈
C0) > P(x|x ∈ C1), and the label 1 otherwise.

Since the true means µi and the population matrix Σ ap-
pearing in the LDA rule are unknown, in practice they need
to be estimated based on the training data {x(i)

j ∈ Ci, i =
0, 1, j = 1, · · · , ni}. Possible estimates for µi, Σ are the
sample estimates

x̂i =
1

ni

ni∑
j=1

x
(i)
j , i ∈ {0, 1}

Ŝ =
1

n− 2

(
(n0 − 1)Ŝ0 + (n1 − 1)Ŝ1

)
,

where

Ŝi =
1

ni

ni−1∑
j=1

(x
(i)
j − x̂i)(x

(i)
j − x̂i)

T, i ∈ {0, 1}.

The estimator Ŝ is usually referred to as the “pooled SCM”
in the literature. The main issue with these sample estimates
is that they are known to perform poorly when the number of
samples is of the same order as the number of variables (or
possibly smaller). In practice, to alleviate the potential ill-
conditioning of the sample covariance matrix, a regularized
estimator, referred to as RSCM, is typically used [3]

Σ(ρ) = IN + ρŜ. (2)

2.2. Classification error of linear discriminant analysis
Let Ĥ be an estimator of Σ−1. Then, conditioned on the
training data x1, · · · ,xn, the probability of misclassification
is given by [4]

εLDA(Ĥ) = π
(n)
0 εLDA

0 (Ĥ) + π
(n)
1 εLDA

1 (Ĥ) (3)

with εLDA
i (Ĥ), i ∈ {0, 1}, the class-conditional classifica-

tion error verifying

εLDA
i (Ĥ) = Φ

 (−1)i+1G(Ĥ) + (−1)ilog
π
(n)
1

π
(n)
0√

D(Ĥ)

 , (4)

where

G(Ĥ) =

(
µi −

x̂0 + x̂1

2

)T

Ĥ(x̂0 − x̂1) (5)

D(Ĥ) = (x̂0 − x̂1)TĤΣĤ(x̂0 − x̂1). (6)

An issue with standard RDA is that it is not robust if
outlying samples are present in the training data. In such
cases, of much practical relevance, we can resort to a robust
covariance estimator, as discussed next.

3. ROBUST LDA IN CLEAN DATA
3.1. Robust estimation of the covariance matrix
We propose to use a robust estimator of Σ known as regular-
ized Tyler’s estimator, defined as the unique solution Ĉ(β)
to the following fixed-point equation [7, 8]:

Ĉ(β)=
(1− β)

n− 2

1∑
i=0

ni∑
j=1

(x
(i)
j − x̂i)(x

(i)
j − x̂i)

T

1
N (x

(i)
j − x̂i)TĈ−1(β)(x

(i)
j − x̂i)

+ βIN , (7)

where β ∈ (max{0, 1 − n/N}, 1]. This covariance matrix
estimator is a hybrid estimator reminiscent of the original
Tyler’s estimator of scale [11] and Ledoit-Wolf shrinkage
estimator [12]. Here, like ρ in the case of the RSCM (2),
β is a regularization parameter that determines the tradeoff
between bias (the shrinkage target, IN ) and variance (the
pooled SCM). Using the inverse of Ĉ(β) as a plug-in estima-
tor of Σ−1 in (1), we should effectively end up with a robust
version of LDA, which we coin Tyler-LDA. We note that,
in [13], the authors also proposed to estimate the population
matrix Σ using regularized M-estimators (although exclud-
ing Tyler’s estimator) in the context of discriminant analysis,
but did not provide a systematic analysis of the performance
of their method.

An important question that naturally arises is whether
Tyler-LDA performs (at least) as well as standard LDA ap-
proaches when the data is clean. This will be answered in
the next section.

3.2. Asymptotic performance of Tyler-LDA
We operate under the following assumptions [5]:
Assumption 1. N/n , cN → c ∈ (0,∞) and ni/n→ πi ∈
(0,∞), i ∈ {0, 1}, as n→∞.
Assumption 2. ||Σ|| = O(1), and ||µ|| = O(1), where
µ , µ0 − µ1.
Assumption 1 characterizes the growth regime under con-
sideration, while Assumption 2, which is concerned with the
covariance and mean scaling of the training data, ensures that
a non-trivial (i.e., neither 0 or 1) asymptotic classification ac-
curacy can be achieved [5].

In [4, 5], the authors studied the asymptotic performance
(in terms of the total classification error) of the RSCM
(2). In particular, they showed that, under Assumptions
1-2, the class-conditional classification error of the RSCM,
εRSCM
i (ρ) , εLDA

i (Σ
−1

(ρ)) converges to the deterministic
quantity εRSCM

i (ρ), in the sense

|εRSCM
i (ρ)− εRSCM

i (ρ)| a.s.−−→ 0, n,N →∞,

with εRSCM(ρ) depending only on the true means of each
class and the underlying covariance matrix. The specifics of
this result are recalled in Lemma 1, in Appendix.

As we will show, the asymptotic misclassification proba-
bility of Tyler-LDA is exactly the same as that of the RSCM
when the training data is free of outliers. To proceed, let us
define the asymptotic class-conditional classification error of
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Tyler-LDA as εTyler
i (β) , εLDA

i (βĈ−1(β)). Equipped with
these assumptions and notations, we can now state our main
result (proved in Section 5):
Theorem 1. [Deterministic equivalent] Let Assumptions 1-
2 hold. For a given β ∈ Rζ , [ζ + max{0, 1 − c−1}, 1],
where ζ ∈ (0,min{1, c−1}), define ρβ = 1

βγ(β)
1−β

1−(1−β)c ,
where γ(β) is the unique positive solution to the equation

1

N
Tr Σ(γ(β)βIN + (1− β)Σ)−1 = 1.

Then, |εTyler
i (β) − εTyler

i (β)| a.s.−−→ 0 for each β ∈ Rζ , as
N,n→∞, with

εTyler
i (β) , εRSCM

i (ρβ), (8)

with the expression of εRSCM
i recalled in Lemma 1.

Theorem 1 shows that, when data is outlier-free, both the
standard regularized LDA method and Tyler-LDA share the
same asymptotic performance, up to a transformation of the
regularization parameters. This is an important message, as
it shows that there is nothing to lose by using Tyler’s esti-
mator over other conventional methods when there are no
outlying observations in the training data.

Regularization parameter optimization. Among pos-
sible choices of β ∈ Rζ , in practice one shall choose the
regularization parameter that minimizes the misclassification
error εTyler(β). To do so, one can first use the optimization
procedure proposed in [5] to find the optimal ρ? minimizing
εRSCM(ρ), and then use the inverse of the mapping β 7→ ρ
given in Theorem 1 to identify a parameter β? that mini-
mizes εTyler

i (β).1 It then remains to estimate this (unknown)
parameter based on the training sample. We will give more
precise details in an extended version of the paper.

4. SIMULATIONS
4.1. Synthetic data
In all simulations, we used the sample mean as the mean esti-
mator for µ0 and µ1. In Fig. 1, we plot the empirical classifi-
cation error associated with the RSCM and Tyler’s estimator
as a function of the regularization parameters ρ and β (top
and bottom x-axes, respectively), in an outlier-free scenario.
The deterministic classification error, computed using Theo-
rem 1 and Lemma 1, and εLDA(Ĥ = Σ) (“oracle” estimator)
are also shown. Simulations show a very good match be-
tween empirical and theoretical values, which validates The-
orem 1. We note that the optimal regularization parameters
β? (for Tyler’s estimator) and ρ? (for the RSCM), identified
on the figure, verify ρ? = ρβ? per the mapping given in the
theorem statement.

Now consider a toy-example scenario where outliers
(distributed as N (5µ, IN )) are introduced in the training
sample. To simplify the discussion, we fix ρ = ρ? and
β = β?, i.e., the optimal regularization parameters in the
outlier-free case (setting of Fig. 1). Fig. 2 shows the classi-
fication error of both estimators as the proportion of outliers

1We remark that the mapping β 7→ ρ is only onto on (0,∞), and thus
the uniqueness of β? is not guaranteed.

Fig. 1: Classification error of the RSCM and Tyler’s estimator as ρ and β
vary (top and bottom x-axes, respectively), forN = 100, n0 = n1 = 200,
averaged over 1000 realizations, with a test sample size of 5000 samples
per class. Σ is such that [Σ]ij = 0.8|i−j|, and has eigenvalue decompo-
sition Σ = V∆VT. µ is such that µ ∝ V1N . The oracle estimator’s
classification error (Σ assumed to be known) is also shown.

increases. It appears that outliers affect the performance of
the RSCM more than that of Tyler’s estimator, with up to a
6% difference in misclassification probablity when the data
has only 5% outliers. This shows that, when data is cor-
rupted by such outliers, Tyler’s estimator prevails over the
RSCM, and it suggests that using Tyler’s estimator would be
preferable over standard, non-robust methods when little is
known about the quality of the training data.

Fig. 2: Classification error of the RSCM and Tyler’s estimator, for N =

100, n0 = n1 = 200 (cN = 1/4), averaged over 1000 realizations.
Outliers follow a multivariate Gaussian distribution N (5µ, IN ).

4.2. MNIST data
We also performed simulations on the MNIST data set [14].
For all 45 possible pairs of classes C0/C1 corresponding to
digits 0/1, 0/2, ... etc., we computed the RSCM and Tyler’s
estimator on all the available training data set (∼5800 sam-
ples per class) and tested it on the testing data set (∼1000
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samples per class). Fig. 3 shows the statistics (as box plots)
of the minimal testing classification error results for both es-
timators and all class pairs, obtained after a sweep over pos-
sible regularization parameters ρ and β. Note that this pro-
vides a lower bound of the lowest classification error achiev-
able on the given testing set, ignoring any effects of estimat-
ing the regularization parameter. The performance on some
representative class pairs is also reported.

Fig. 3: Box plot of the classification error of the RSCM and Tyler-LDA
for all class pairs of the MNIST dataset (left), and comparison of the classi-
fication error for some specific class pair examples (right).

We observe that the RSCM and Tyler’s estimator perform
similarly (with a slight advantage, although non-statistically
significant, for Tyler’s estimator), which appears consistent
with our analysis, if one were to assume that the MNIST
data is free of outliers. In practice, one should however esti-
mate the optimal regularization parameter based on training
data. To do so, the procedure briefly described in Subsec-
tion 3.2 can be used. As indicated, precise details on this
shall be given in an extended version of this paper. It also
remains to study the theoretical performance of the RSCM
and of Tyler’s estimator under less clean scenarios; for ex-
ample, with samples from different classes having different
variances, or with outlying samples coming from a different
distribution. This problem is currently under investigation.

5. PROOF OF THEOREM 1
The proof relies on understanding the asymptotic behav-
ior of bilinear forms of the type aTĈ−k(β)b (k = 1, 2,
β ∈ Rζ), which appear in the expressions of G(βĈ(β)−1)

and D(βĈ(β)−1) in (5) and (6), used to compute the class-
conditional classification error εTyler

i (β) = εLDA
i (βĈ(β)−1)

in (4). This type of functional of Ĉ−k(β) is intricate, be-
cause Ĉ(β) is only implicitly defined. However, along
similar lines to the proof of [10, Lemma 3], it can be proved
that2 for β ∈ Rζ = [ζ + max{0, 1 − c−1}, 1], where
ζ ∈ (0,min{1, c−1}),∥∥∥Ĉ(β)/β −Σ(ρβ)

∥∥∥ a.s.−−→ 0, n,N →∞, (9)

with ρβ defined in Theorem 1. From this, it can be shown
that the bilinear forms βkaTĈ−k(β)b are asymptotically
close to their RSCM counterparts aTΣ(ρβ)−kb; the behav-
ior of which is well-understood. Specifically, for a given

2Complete details will be given in an extended version.

β ∈ Rζ , for a,b ∈ RN such that lim supN ||a|| < ∞ a.s.,
lim supN ||b|| <∞ a.s., and k = 1, 2,∣∣∣βkaTĈ−k(β)b− aTΣ

−k
(ρβ)b

∣∣∣ a.s.−−→ 0, (10)

as N,n → ∞. Taking for example k = 1, it is proved by
first noting∣∣∣aT(βĈ−1(β)−Σ

−1
(ρβ))b

∣∣∣ ≤ K||βĈ−1(β)−Σ
−1

(ρβ)||

≤ K · ||βĈ−1(β)||·||Σ−1(ρβ)||·||Ĉ(β)/β−Σ(ρβ)||,

where the last inequality is due to the resolvent identity [15],
and where K = ||a|| · ||b||. The fact that β, ρβ > 0 ensure
that ||Ĉ−1(β)||, ||Σ−1(ρβ)|| < ∞, which, along with (9)
and lim supN ||a|| <∞ a.s., lim supN ||b|| <∞ a.s., leads
to (10), for k = 1. The case k = 2 is handled similarly.

Equipped with this, we can prove that

|G(βĈ(β)−1)−G(Σ
−1

(ρβ))| a.s.−−→ 0 (11)

|D(βĈ(β)−1)−D(Σ
−1

(ρβ))| a.s.−−→ 0. (12)

Take a = µi − (x̂0 + x̂1)/2 and b = (x̂0 − x̂1). Then, As-
sumption 2 implies lim supN ||a|| <∞ a.s., lim supN ||b|| <
∞ a.s., by the law of large numbers. The convergence in
(11) then follows from (10) by taking k = 1. For (12), we
remark that

|D(βĈ(β)−1)−D(Σ
−1

(ρβ))|

=
∣∣∣Tr Σ

(
β2Ĉ(β)−1bbTĈ(β)−1−Σ

−1
(ρβ)bbTΣ

−1
(ρβ)

)∣∣∣
≤ ||Σ|| ·

∣∣∣bT
(
β2Ĉ(β)−2 −Σ

−2
(ρβ)

)
b
∣∣∣ .

Using (10) with k = 2 leads to (12).
From (4), using (11), (12), and the fact that

√
· and Φ(·)

are continuous functions, we have proved∣∣∣εTyler
i (β)− εRSCM

i (ρβ)
∣∣∣ a.s.−−→ 0, n,N →∞.

Combining this with Lemma 1 concludes the proof.
APPENDIX

Lemma 1. [5, Corollary 3] Let Assumptions 1-2 hold. As
N,n → ∞, we have |εRSCM

i (ρ) − εRSCM
i (ρ)| a.s.−−→ 0 for

each ρ > 0, with

εRSCM
i (ρ) = Φ

 (−1)i+1Gi (ρ) + (−1)ilog
(
π0

π1

)
√
D (ρ)

 ,

with Gi (ρ) and D (ρ) defined as

Gi (ρ)=
(−1)i

2
µT

(
IN +

ρ

1 + ρδ
Σ

)−1
µ−nδ

2

(
1

n0
− 1

n1

)

D (ρ) =
µTΣAµ +

(
1
n0

+ 1
n1

)
Tr Σ2A

1− ρ2

n(1+ρδ)2 Tr Σ2A
,

with A =
(
IN + ρ

1+ρδΣ
)−2

, and δ the unique solution to

δ =
1

N
Tr Σ

(
IN +

ρ

1 + ρδ
Σ

)−1
.
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