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ABSTRACT

This paper considers the problem of quickest detection of a change
in distribution where the signal may undergo both nuisance and
critical changes. Our goal is to detect the critical change with-
out raising a false alarm over the nuisance change. We formulate
the quickest change detection (QCD) problem in the presence of
a nuisance change following Lorden’s formulation. We propose a
window-limited sequential change detection procedure based on the
generalized likelihood ratio test statistic for the problem of QCD
in which both nuisance and critical changes may occur. We derive
a recursive update scheme for our proposed test statistic and show
that our test is asymptotically optimal under mild technical condi-
tions. We compare our proposed stopping rules with a naive 2-stage
stopping time, which attempts to detect the changes using separate
CuSum stopping procedures for the nuisance and critical changes.
Simulations suggest that our proposed stopping time outperforms
the naive 2-stage procedures.

Index Terms— Quickest change detection, Nuisance change,
Optimal Stopping Time, Recursive update, GLRT statistic

1. INTRODUCTION

Quickest change detection (QCD) is a fundamental problem in statis-
tics. Given a sequence of independent and identically distributed
(i.i.d.) observations {xt : t ∈ N} with distribution f up to an un-
known change point ν and are i.i.d. with distribution g 6= f after.
Subject to false alarm constraints, the goal is to detect this change as
quickly as possible. Traditionally, applications of QCD can be found
in manufacturing, in areas such as quality control [1, 2] where any
change in the quality of products must be quickly detected. As the
cost and size of modern-day sensors decreases, QCD methods have
found applications in other areas such as fraud detection [3], cog-
nitive radio [4], network surveillance [5–8], structural health mon-
itoring [9], spam detection [10], bioinformatics [11], power system
line outage detection [12], remote sensing [13],spectrum reuse [14],
video segmentation [15] etc.

For the QCD problem where f and g are fully specified and the
change point ν is unknown but deterministic, Page [16] developed
the Cumulative Sum Control Chart (CuSum). Its optimality as the
false alarm rate goes to zero was established by Lorden [17]. Later,
Moustakides [18] showed that the CuSum test is exactly optimal un-
der Lorden’s optimality criterion. The CuSum test is also asymp-
toticaly optimal [19] under the Pollak’s criterion [20], as the false
alarm rate goes to zero. When g is not fully specified, Lorden [17]
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showed that the Generalized Likelihood Ratio (GLR) CuSum test
is asymptotically optimal for the case of finite multiple post-change
distributions. Other methods for the case when g is unknown to a
certain degree were also proposed [19, 21–24]. We refer the reader
to [25–27] and the references therein for an overview of the QCD
problem. The papers [28–34] consider QCD of transient changes,
where the change is either not persistent or multiple changes occur
throughout the monitoring process. Unlike our QCD problem which
allows some changes to be considered nuisance, the aforementioned
papers consider any change to be critical.

In many practical applications, the signal of interest may un-
dergo different types of changes. However, only a subset of these
changes may be of interest to the user. One example is the prob-
lem of bearing failure detection using accelerometer readings [35].
During normal operations, the bearings are driven at two different
activity levels, idle or active. In a typical bearing failure detection
scenario, the bearing is initially be driven at the idle state. A change
to drive it at the active state results in a change in the statistical prop-
erties of the accelerometer readings. However, this change is not of
interest to us. We are only interested in the change arising from the
failing of the bearing. Furthermore, the statistical properties of the
observations obtained when the bearing is faulty depend on the ac-
tivity level which it is driven at. We distinguish the changes which
the signal undergoes using the concept of a nuisance change and a
critical change. However, the traditional QCD framework does not
allow us to distinguish between critical and nuisance changes.

In this paper, we address the QCD problem under the possibility
of a nuisance change where both the nuisance and critical change-
points are unknown but deterministic. We propose a window-limited
stopping time which is able to identify the critical change quickly
while ignoring the nuisance change.

A preliminary version of this work was presented in [36] where
we developed an optimal sequential change detection procedure for
the Bayesian formulation of the problem and proposed a stopping
time which can be updated recursively for the non-Bayesian formu-
lation of the problem. The asymptotic behavior of the GLRT stop-
ping time [36] proposed for the non-Bayesian problem is difficult to
derive as the test-statistic used is not a likelihood ratio and standard
techniques cannot be applied to analyze its asymptotic behavior. To
the best of the authors’ knowledge, there are no other works that
consider the QCD problem for a signal which may undergo a change
that is not of interest.

The rest of this paper is organized as follows. In Section 2, we
present our signal model and problem formulation. We propose the
W-SGLR stopping time in Section 3 and derive its properties in Sec-
tion 4. We present numerical simulations to illustrate the perfor-
mance of our proposed stopping time in Section 5. We conclude in
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Section 6.

2. PROBLEM FORMULATION

In this paper, we assume that the signals observed may be subjected
to two types of change: a critical change at νc and a nuisance change
at νn. Both the critical and nuisance change points are unknown a
priori. We are interested in detecting the critical change while the
nuisance change is not of interest. We consider the following signal
model: let f, fn, g, gn be distinct distributions. At each time t, we
let hνc,νn,t to be the distribution that generates the observation Xt
when the nuisance change point is at νn and the critical change point
is at νc:

hνc,νn,t =


f if t < min{νc, νn},
fn if νn ≤ t < νc,
g if νc ≤ t < νn,
gn if max{νc, νn} ≤ t.

(1)

Let X1, X2, . . . be a sequence of independent random variables sat-
isfying Xt ∼ hνc,νn,t where νn, νc ≥ 0 are the unknown but
deterministic nuisance and critical change-points respectively. The
quickest change detection problem is to detect the critical change
νc through observing X1 = x1, X2 = x2, . . . , as quickly as pos-
sible while keeping the false alarm rate low. In our signal model,
the nuisance change point also affects the distribution which gener-
ates the observations after the critical change point. This creates a
dependence between the nuisance change point and the distribution
after the critical change point. While our QCD problem is to detect a
change in distribution from either f or fn to either g or gn as quickly
as possible, our formulation is different from assuming composite
pre-change and post-change distribution families [37] since the nui-
sance change causes the distribution of Xt to be non-stationary be-
fore or after the critical change, depending on whether the nuisance
change occurs before or after the critical change, respectively.

In a typical sequential change detection procedure, at each time
t, a test statistic S(t) is computed based on the currently available
observations X1 = x1, . . . , Xt = xt, and the observer decides that
a change has occurred at a stopping time τ where τ is the first t such
that S(t) exceeds a pre-determined threshold b:

τ(b) = inf{t : S(t) > b}.

Our QCD problem can be formulated as a minimax problem sim-
ilarly as Lorden’s formulation [17] where we seek a stopping time
that minimizes the WADD subject to an average run length (ARL)
constraint:

minimize
τ

WADD(τ)

subject to ARL(τ) ≥ γ.
(2)

where τ is a stopping time with respect to the filtration {σ(Xt
1)}t≥0,

WADD(τ) = sup
νc,νn≥1

ess supEνc,νn
[
(τ − νc + 1)+

∣∣Xνc−1
1

]
,

ARL(τ) = infνn≥1 E∞,νn [τ ] , ess sup is the essential supremum
operator and Eνc,νn is the expectation operator assuming the critical
change-point is at νc and nuisance change-point is at νn. In the next
section, we propose a stopping time for (2).

3. TEST STATISTICS FOR QUICKEST CHANGE
DETECTION

Suppose that we observe the sequence X1 = x1, X2 = x2, . . . se-
quentially and it is known that the nuisance change does not take
place (i.e., νn = ∞), then Page’s CuSum test statistic [16] is given
as

SCS(t) = max
1≤k≤t+1

t∑
i=k

log
g(xi)

f(xi)
= log max

1≤k≤t+1

t∏
i=k

g(xi)

f(xi)

and we declare that a critical change has taken place at τCS when
the CuSum test statistic first exceeds a pre-determined threshold b
where,

τCS = inf {t : SCS(t) > b} (3)

= inf

{
t : max

1≤k≤t+1

t∏
i=k

g(xi)

f(xi)
> eb

}
. (4)

Based on the stopping time (4), Page’s CuSum stopping time can
be seen as a repeated application of a one-sided sequential proba-
bility ratio test. As there are t sequential probability ratio tests to
run at time t, a naive implementation of the stopping time τCS will
require O(t2) operations to compute SCS(t) for each t. Fortunately,
the CuSum test statistic has a convenient recursion SCS(t + 1) =

max
{
SCS(t) + log g(xt)

f(xt)
, 0
}

that allows the CuSum stopping time
to be implemented efficiently.

If the nuisance change takes places at a time νn <∞ and νn is
known, a modification of Page’s test statistic gives the following:

SCS(t) = log max
1≤k≤t+1

t∏
i=k

h0,νn,i(xi)

h∞,νn,i(xi)
, (5)

where h0,νn,i(x) and h∞,νn,i(x) are as defined in (1). Similar to the
case where νn = ∞, the CuSum test statistics admits a convenient
recursion for efficient implementation. Furthermore, for both the
cases mentioned above, τCS is known to be asymptotically optimal
[17].

In our problem formulation, the nuisance change-point νn is un-
known. Replacing νn with its maximum likelihood estimator in both
the numerator and denominator, we obtain the following Generalized
Likelihood Ratio (GLR) test statistic

ΛGLR(k, t) =
maxk≤j≤t+1

∏t
i=k h0,j,i(xi)

maxk≤j≤t+1

∏t
i=k h∞,j,i(xi)

, (6)

SGLR(t) = log max
1≤k≤t+1

ΛGLR(k, t). (7)

While the GLR stopping time is commonly used in practical appli-
cations, its average run length is challenging to study theoretically
since the GLR test statistic SGLR(k, t) is not a likelihood ratio and
standard techniques in Theorem 6.16 of [27] cannot be used to ana-
lyze its average run length. In order to develop a stopping time with
ARL that can be studied theoretically, we simplify the maximum
likelihood estimation at the numerator to only consider two cases
j = k and j = t+ 1. This gives us the Simplified GLR (SGLR) test
statistic

ΛSGLR(k, t) =
max

{∏t
i=k g(xi),

∏t
i=k gn(xi)

}
maxk≤j≤t+1

∏t
i=k h∞,j,i(xi)

(8)

SSGLR(t) = log max
1≤k≤t+1

ΛSGLR(k, t). (9)
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As critical changes are typically expected to occur rarely, a large
number of samples are expected to be observed before the critical
change. Unlike the CuSum test statistic, the SGLR test statistic
does not have a convenient recursion. Any implementation of the
SGLR stopping time would require at least O(t) operations to com-
pute SSGLR(t) for each t. This requirement on computational re-
sources is a significant limitation for many practical applications. In
order to control the computational resources required, we propose
the Window-Limited SGLR (W-SGLR) test statistic and stopping
time following the ideas presented in [19],

SW-SGLR(t) = log max
t−mb≤k≤t+1

ΛSGLR(k, t), (10)

τW-SGLR = inf {t : SW-SGLR(t) > b} (11)

where the window size mb satisfies lim inf
b→∞

mb

b
> I−1, logmb =

o(b) such that I = min
{
Eg
[
log g(X)

f(X)

]
,Eg

[
log g(X)

fn(X)

]
,

Egn
[
log gn(X)

f(X)

]
,Egn

[
log gn(X)

fn(X)

]}
.We note that for each t, it re-

quires O(m3
b) operations to naively compute SW-SGLR(t). Window-

limited test statistics were first introduced by Willsky and Jones
[19]. Lai further discusses their properties and the choice of window
size and thresholds in [19]. For the rest of this paper, we require the
following assumption:

Assumption 1. The first four moments with respect to both g and
gn of log fn(X)

f(X)
exists.

4. PROPERTIES OF THE W-SGLR STOPPING TIME

In this section, we derive a recursive update scheme for the SW-SGLR

and present the asymptotic properties of SW-SGLR and τW-SGLR. First,
we define the following generalized likelihood ratios

Λ(k, t) =

∏t
i=k g(xi)

maxk≤j≤t+1

∏j−1
i=k f(xi)

∏t
i=j fn(xi)

,

Λn(k, t) =

∏t
i=k gn(xi)

maxk≤j≤t+1

∏j−1
i=k f(xi)

∏t
i=j fn(xi)

and we have ΛSGLR(k, t) = max {Λ(k, t),Λn(k, t)}. Next, we
present a lemma describing the recursive properties of Λ and Λn:

Lemma 1. For any k, t ∈ N such that 0 ≤ k ≤ t, we have the
following recursion

Λ(k, t+ 1) = min

{
Λ(k, t)

g(xt+1)

fn(xt+1)
,

(
t∏
i=k

g(xi)
f(xi)

)
g(xt+1)

f(xt+1)

}
,

Λn(k, t+ 1) = min

{
Λn(k, t)

gn(xt+1)

fn(xt+1)
,

(
t∏
i=k

gn(xi)
f(xi)

)
gn(xt+1)

f(xt+1)

}
.

Proof. Let m = arg maxk≤j≤t+2

∏j−1
i=k f(xi)

∏t+1
i=j fn(xi), we

consider the possible values of m. If m = t+ 2, then Λ(k, t+ 1) =∏t+1
i=k

g(xi)
f(xi)

. If m < t+ 2, we obtain

Λ(k, t+ 1) =

∏t+1
i=k g(xi)

maxk≤j≤t+2

∏j−1
i=k f(xi)

∏t+1
i=j fn(xi)

=

∏t
i=k g(xi)

maxk≤j≤t+2

∏j−1
i=k f(xi)

∏t
i=j fn(xi)

g(xt+1)

fn(xt+1)

= Λ(k, t)
g(xt+1)

fn(xt+1)
.

Putting everything together, we obtain

Λ(k, t+ 1) = min

{
Λ(k, t)

g(xt+1)

fn(xt+1)
,

(
t∏
i=k

g(xi)
f(xi)

)
g(xt+1)

f(xt+1)

}
.

The proof for Λn(k, t+1) is similar. The proof is now complete.

In order to derive a recursive implementation of SW-SGLR(t), we
introduce the following:

α(t, j) = Λ (t−mb − j + 1, t) , αn(t, j) = Λn (t−mb − j + 1, t) ,

β(t, j) =

t∏
i=t−(mb−j+1)

g(xi)

f(xi)
, βn(t, j) =

t∏
i=t−(mb−j+1)

gn(xi)

f(xi)
,

for j ∈ 1, . . . ,mb + 1 and α(t,mb + 2) = αn(t,mb + 2) =
β(t,mb + 2) = βn(t,mb + 2) = 1. By expressing the W-SGLR
test statistic in terms of α(t, k), αn(t, k) and using Lemma 1, we
obtain the following proposition.

Proposition 1. The W-SGLR test statistic can be computed using

SW-SGLR(t) = log max
1≤k≤mb+2

max{α(t, k), αn(t, k)}

where α(t, k), αn(t, k) can be computed using the following recur-
sion for k ∈ 1, . . . ,mb + 1:

β(t+ 1, j) = β(t, j)
g(xt+1)

f(xt+1)
,

α(t+ 1, j) = min

{
α(t, j − 1)

g(xt+1)

f(xt+1)
, β(t+ 1, j)

}
,

βn(t+ 1, j) = βn(t, j)
gn(xt+1)

f(xt+1)
,

αn(t+ 1, j) = min

{
αn(t, j − 1)

gn(xt+1)

f(xt+1)
, β(t+ 1, j)

}
.

As compared to a naive implementation of the W-SGLR stop-
ping time, an implementation using Proposition 1 requires only
O(mb) operations to compute SW-SGLR(t) for each t.

Since the stopping time τW-SGLR is defined by the first time the
test statistic SW-SGLR crosses the threshold b, the rate of growth of the
statistic log Λ and log Λn would allow us to understand the increase
in detection delay as b increases. Next, we will show that rate of
growth 1

t−k+1
log Λ(k, t) and 1

t−k+1
log Λn(k, t) converge, to dif-

ferent limits, in probability as t tends to infinity. In particular, the
limit which the rate of growth converges to depends on the sign of
ρg = Eg[log fn(X)

f(X)
] and ρgn = Egn [log fn(X)

f(X)
] where Eh denotes

the expectation operator assuming X has distribution h.

Theorem 1. For any νc ≤ k < ∞ and νn < ∞, we have the fol-
lowing convergence in probability as summarized in the table below

Sign of ρg ,ρgn under P∞,νc under Pνn,νc
ρg ρgn

log Λ(k,t)
t−k+1

converges to log Λn(k,t)
t−k+1

converges to

>0 >0 Eg
[
log g(X)

fn(X)

]
Egn

[
log gn(X)

fn(X)

]
>0 <0 Eg

[
log g(X)

fn(X)

]
Egn

[
log gn(X)

f(X)

]
<0 >0 Eg

[
log g(X)

f(X)

]
Egn

[
log gn(X)

fn(X)

]
<0 <0 Eg

[
log g(X)

f(X)

]
Egn

[
log gn(X)

f(X)

]
where Pνn,νc is probability distribution on {Xi}i∈N assuming the
critical change-point is at νc and nuisance change-point is at νn.
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Heuristically, this implies that log Λ and log Λn grows linearly
with respect to t and that the WADD grows linearly with respect to
the threshold b. The next theorem states these results rigorously.

Theorem 2. For any νn ∈ N ∪ {∞}, we have

ARLνn [τW-SGLR] = Eνn,∞ [τW-SGLR] ≥ 1

2
eb,

WADDνn [τW-SGLR] = sup
νc≥1

ess supEνn,νc
[
(τW-SGLR − νc + 1)+

∣∣Xνc−1
1

]
≤ (I−1 + o(1))b.

Furthermore,

ARL[τW-SGLR] ≥ 1

2
eb,

WADD[τW-SGLR] ≤ (I−1 + o(1))b,

and if ρg < 0, the stopping time τW-SGLR is asymptotically optimal
for (2).

The interested reader may refer to [38] for the proofs for Theo-
rem 1 and 2 which we omit due to space constraints.

In the next section, we present numerical results from simula-
tions to illustrate the performance of the proposed stopping time.

5. NUMERICAL RESULTS

We denote N (µ, σ2) as the normal distribution with mean µ and
variance σ2. In our first set of simulations, we let f = N (0, 1),
g = N (0, 10), fn = N (2, 1) and gn = N (2, 10) where the critical
change is a change in variance and the nuisance change is a change
in mean. We ran the simulations with two change-point configura-
tions to illustrate the behaviour of the W-SGLR test statistic for dif-
ferent window-sizes. In Fig. 1(a), we set νc = 1000, νn = 1500
and in Fig. 1(b), we set νc = 1500, νn = 1000. In Fig. 1(a)
and (b), the test statistic remains low before the critical change-point
and grows linearly with the gradient I = 3.33487 after the critical
change-point. This trend continues until the statistics approximately
achieves the value of I × mb = 3.33487mb. In Fig. 1(a) when
mb = 1024, we note that the test statistic continues to grow linearly
with the gradient I = 3.33487 even after the nuisance change point.
In Fig. 1(b), we note that the test statistic continues to remain low
during the period between the nuisance change point and critical.

Next, we compare the stopping time with a naive 2-stage stop-
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Fig. 1. Examples of W-SGLR test statistics S(t) as a function of t
when (a) νc = 1000, νn = 1500 and (b) νc = 1500, νn = 1000
with f = N (0, 1), fn = N (2, 1), g = N (0, 10), gn = N (2, 10).

ping time. The naive stopping time τ2-stage is constructed from stop-
ping times based on the optimal CuSum stopping times described
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Fig. 2. Comparison of trade-off between the ARL and the average
detection delay for the proposed stopping time τW-SGLR and naive
stopping time τ2-stage. The critical and nuisance change points were
chosen randomly on the signal of length 216

in (4) with τ{p→q,b} = inf
{
t : max1≤k≤t+1

∏t
i=k

p(xi)
q(xi)

> eb
}

for any pair of distribution p and q 6= p and threshold b. There
are four stopping times required τf→fn,bn , τf→g,bc , τf→gn,bc , and
τfn→gn,bc where the threshold for declaring critical change is bc
and threshold for declaring a nuisance change is bn. The 2-stage
CuSum τ2-stage can be described as follows. In the first stage, we
apply the stopping times τ{f→g,bc}, τ{f→gn,bc} and τ{f→fn,bn}
to the observations. If τ{f→g,bc} or τ{f→gn,bc} stops the process
before τ{f→fn,bn}, we declare that a critical change has occurred
and τ2-stage = min{τ{f→g,bc}, τ{f→gn,bc}}. Otherwise, we apply
τ{fn→gn,bc} to the rest of the observations after the stopping time
τ{f→fn,bn} and set τ2-stage = τ{fn→gn,bc}. We compare the trade-
off between the average run length and the average detection delay
of the proposed W-SGLR stopping time against the 2-stage stopping
time for varying nuisance change thresholds in Fig. 2. We observe
that our proposed W-SGLR stopping achieves a lower average de-
tection delay as compared to each of the 2-stage stopping time for
large average run lengths.

6. CONCLUSION

We have studied the non-Bayesian QCD problem where the signal
may be subjected to a nuisance change. We proposed a window-
limited stopping time τW-SGLR that quickly detects the critical change
while ignoring the nuisance change. We derived the stopping time’s
asymptotic behavior and the condition when the proposed stopping
time is asymptotically optimal. Numerical simulations illustrate the
behavior of the W-SGLR test statistic for different window sizes and
suggest that the W-SGLR stopping time outperforms the naive 2-
stage stopping time for large average run lengths.
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