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ABSTRACT

Compressed sensing seeks to recover an unknown sparse vector from
undersampled rate measurements. Since its introduction, there have
been enormous works on compressed sensing that develop efficient
algorithms for sparse signal recovery. The restricted isometry prop-
erty (RIP) has become the dominant tool used for the analysis of ex-
act reconstruction from seemingly undersampled measurements. Al-
though the upper bound of the RIP constant has been studied exten-
sively, as far as we know, the result is missing for the lower bound. In
this work, we first present a tight lower bound for the RIP constant,
filling the gap there. The lower bound is at the same order as the
upper bound for the RIP constant. Moreover, we also show that our
lower bound is close to the upper bound by numerical simulations.
Our bound on the RIP constant provides an information-theoretic
lower bound about the sampling rate for the first time, which is the
essential question for practitioners.

Index Terms— Compressed sensing, sparse recovery, restricted
isometry property, Gaussian random matrix, upper and lower bound

1. INTRODUCTION

In the field of compressed sensing, sparsity of data and structure can
be harnessed for signal reconstruction with samples much fewer than
Nyquist sampling [1, 2, 3, 4]. This has opened up a new era of signal
processing, offering solutions to real-world problems where there is
very limited accessible data [3, 5], including sensor networks [6],
medical imaging [7], camera design [8], etc.

Candes et al [1] proved that the compressed sensing problem
can be reformulated as an l0-norm minimization. Since l0-norm op-
timization is known to be NP-hard, it is shown [1] that when the
sensing matrix possesses certain favorable properties, the solution
to the l0-norm optimization is equal to the corresponding l1-norm
optimization. This property, known as the restricted isometry prop-
erty (RIP), has been the core of compressed sensing, with many re-
searchers working towards extending the conditions [9, 10] as well
as improving the results [11].

Since the proposal of compressed sensing, many efficient algo-
rithms have been developed for sparse signal recovery [12, 13, 14,
15], and the RIP is considered as the main tool for analyzing the
algorithms [1, 16, 17, 18].

We first recall the definition of RIP. Let Φ be a matrix in Rn×N .
We say Φ satisfies the RIP with constant δk for k-sparse vectors, if

This work was partly funded by the National Natural Science Founda-
tion of China (NSFC 61531166005, 61571263) and the National Key Re-
search and Development Program of China (Project No. 2016YFE0201900,
2017YFC0403600). (Corresponding author: Yuantao Gu.)

δk is the minimum constant to satisfy the following condition:

1− δk ≤ ∥Φv∥
∥v∥ ≤ 1 + δk, ∀v ∈ RN ∩Ψk\ {0} , (1)

where Ψk is the set of k-sparse vectors, i.e. vectors which have
at most k nonzero entries. ∥·∥ denotes the vector l2-norm unless
otherwise stated.

However, as far as we are concerned, the currently existing re-
sults of RIP constant for compression matrices Φ are all about its
upper bound, i.e,∣∣∣∣∥Φv∥ − ∥v∥

∥v∥

∣∣∣∣ ≤ δuk , ∀v ∈ RN ∩Ψk\ {0} .

However, the information-theoretic lower bound is also of great im-
portance. In this work, we derive a tight lower bound of RIP constant
for Gaussian random matrices by the construction method, i.e.∣∣∣∣∥Φv∥ − ∥v∥

∥v∥

∣∣∣∣ ≥ δlk, ∃v ∈ RN ∩Ψk\ {0} ,

which is the main contribution of this work.
Besides, to show the tightness of the lower bound, we provide

a new upper bound for RIP constant, which is of the same order as
existing results, improved by a constant. We also show that the lower
and upper bounds are of the same order rigorously.

The rest of this paper is organized as follows. In Section 2, we
state some backgrounds about the RIP and sparse recovery. In Sec-
tion 3, we first present the main results of this paper regarding the
lower and upper bounds of RIP constant of Gaussian random matri-
ces, and then provide the sketch of the proof. In Section 5, numerical
simulations are implemented to compare the lower bound, the new
upper bound and existing work for the RIP constant. We conclude
this paper in Section 6. The details of the proof of the main results,
and more detailed simulations can be found in [19].

2. BACKGROUND

In this section, we state some background about the RIP and sparse
recovery.

2.1. The Restricted Isometry Property

The compressed sensing setting poses the k-sparsity constraint on
the vector v. An alternate view of this is to convert the sparsity
constraint onto Φ. Let S be the index set for which the entries v is
nonzero. Now we set all columns with indices not in S as zero, such
that Φ is k-sparse column-wise. Denote the resulting matrix as ΦS .
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Therefore, the condition in (1) can be rewritten as

1−δk ≤
√

λmin(ΦT
SΦS) ≤

√
λmax(ΦT

SΦS) ≤ 1+δk, ∀ |S| ≤ k,

or equivalently

1− δk ≤ smin(ΦS) ≤ smax(ΦS) ≤ 1 + δk, ∀ |S| ≤ k.

Here λmax and smax denote respectively the maximum eigenvalue
and the maximum singular value of a matrix. λmin and smin are
defined likewise.

To simplify the notations, we define

skmax(Φ) := max
u∈Sn−1

max
v∈SN−1

v∈Ψk

uTΦv,

skmin(Φ) := max
u∈Sn−1

min
v∈SN−1

v∈Ψk

uTΦv.

Therefore we have

δk = max
{
δ+k , δ−k

}
,

where

δ+k = skmax(Φ)− 1,

δ−k = 1− skmin(Φ).

skmax(Φ) and skmin(Φ) can also be understood as the maximum and
minimum singular values of all possible ΦS matrices. Then the up-
per and lower bound of the RIP constant δk satisfies

δuk ≥ max
{
δ+k , δ−k

}
,

δlk ≤ max
{
δ+k , δ−k

}
.

Hence, δuk is related to estimation of upper bound of skmax(A) and
lower bound of skmin(A), and δlk is related to estimation of lower
bound of skmax(A) and upper bound of skmin(A).

2.2. Previous Results of Gaussian RIP

One of the most studied families of matrices with favorable RIP
property is Gaussian random matrices, in the form of

Φ =
1√
n
A, (2)

where each entry in A ∈ Rn×N is i.i.d. standard Gaussian, namely
N (0, 1). In the following we recall a benchmark result regarding
Gaussian RIP, which contrasts sharply with our result.

The following result is obtained from covering numbers:

Theorem 1 (Theorem 5.2 in [20]). Let Φ ∈ Rn×N be a random
matrix in the form of (2). Then for any 0 < δ < 1, we have

(1− δ) ∥x∥ ≤ ∥Φx∥ ≤ (1 + δ) ∥x∥ , ∀x ∈ RN ∩Ψk,

with probability at least

1−
(
N
k

)
2

(
12

δ

)k

e−c0n, (3)

where c0 = δ3

32
− δ4

96
.

Remark 1. Using the approximation (N
k ) ≈

(
eN
k

)k, we can rewrite
(3) as

1− e−c1n,

where
c1 = c0 −

k

n
ln

eN

k
− ln 2

n
− k

n
ln

12

δ
.

In order to justifiably consider the asymptotic case of n → ∞, an
immediate requirement is c1 > 0, which is equivalent to

n >
1

c0

(
k ln

eN

k
+ ln 2 + k ln

12

δ

)
.

Therefore a really large n is required to make the asymptotic analysis
valid.

2.3. Sparse Recovery

Sparse recovery concerns recovering a k-sparse vector x from linear
measurements y = Φx, where the following results are provided in
literature [1, 2, 4].

Theorem 2. Suppose x is k-sparse. If δ2k < 1, then l0-minimization

min
x

∥x∥0 s.t. y = Φx

is exact and unique.

Theorem 3. Suppose x is k-sparse. If δ2k <
√
2 − 1, then l1-

minimization
min
x

∥x∥1 s.t. y = Φx

is exact and unique.

Remark 2. If the RIP constant of Φ is greater than 1, l0-minimization
may fail. If the RIP constant of Φ is greater than

√
2 − 1, l1-

minimization may fail. However, evaluating the RIP constant for
a given matrix is NP-hard [21]. Hence, it’s very important to
derive tight information-theoretic bounds for the analysis of the
reconstruction algorithms.

3. MAIN RESULTS

In this section, we first present the main results of this paper regard-
ing the lower bound of RIP constant of Gaussian random matrices,
then derive a new upper bound of RIP constant for comparison, and
finally provide the proof.

While Gaussian matrices Φ of the form (2) are adopted as sens-
ing matrices, in the proof we shall first focus on standard Gaussian
A for simplicity on expression, before switching back to properties
of Φ using properties derived for A. In the proof, we will consider
skmax(A) and skmin(A) directly, instead of considering δ+k and δ−k .

Theorem 4. Let A be a Gaussian matrix in Rn×N . Then with prob-

ability at least 1− 6e−
nε2

2 , the RIP constant of Φ = 1√
n
A satisfies

δ+k ≥ 1√
2

(
2 + pT 2 +

√
(pT 2)2 + 4pT 2

)1/2

− 1

+O
(
ε+

1√
n

)
,

δ−k ≥1− 1√
2

(
2 + pT 2 −

√
(pT 2)2 + 4pT 2

)1/2

+O
(
ε+

1√
n

)
,
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where p = k
n

and T =

√
EX2

∣∣∣X2 > t with P
(
X2 > t

)
= k−1

N−1
.

Proof. The proof is postponed to Section 4. The details about O(ε+
1√
n
), which will be verified in the numerical simulations, are ex-

plained in [19].

Theorem 5. Let A be a Gaussian matrix in Rn×N . Then Φ =
1√
n
A satisfies the RIP with constant

δk :=
√
pT +

2
√
2π

T
√
n

+ ε

for k-sparse vectors with probability at least 1 − 2e−
nε2

2 , where

p = k
n

and T =

√
EX2

∣∣∣X2 > t with P
(
X2 > t

)
= k

N
.

Proof. We briefly introduce the derivation of the upper bound of
skmax(A) here, and the lower bound of skmin(A) can be obtained sim-
ilarly. In order to derive the upper bound, we first use a result regard-
ing Lipschitz functions that converts analysis on skmax(A) to that on
Eskmax(A). Then we construct two Gaussian processes which allow
the comparison lemma to relax skmax(A) to another more tractable
form. Finally, we combine the two steps to obtain the result. The
details of the proof are included in [19].

Remark 3. Since t = O
(
log N

k

)
and T = O

(√
log N

k

)
,

the results above show that Φ satisfies the RIP if and only if
n = O

(
k log N

k

)
. This reveals that the lower and upper bounds

match in order.

4. PROOF OF THEOREM 4

We look for the lower bound of the RIP constant, i.e. the lower
bound of skmax(A) and the upper bound of skmin(A). We do this by
construction.

Since in the expression uTAv there are no constraints on u
other than u ∈ Sn−1, we can always find some orthogonal matrix U
such that

uTAv = (Uu)T(UA)v := ũTÃv.

Here ũ = Uu can still represent any arbitrary vector in Sn−1, and
Ã := UA satisfies the following form:

Ã =

[
∥a1∥ cT

0 B

]
,

where a1 denotes the first column of the original matrix A, cT =
[c1, · · · , cN−1] is a row vector in RN−1 with its entries’ absolute
values in decreasing order, and B ∈ R(n−1)×(N−1). This form of
Ã is achievable by choosing the first column of U parallel to the first
column of A and applying certain permutations to the latter N − 1
columns.

Observing the fact that

skmax(A) = max
v∈SN−1

v∈Ψk

∥∥∥Ãv
∥∥∥

and similarly

skmin(A) = min
v∈SN−1

v∈Ψk

∥∥∥Ãv
∥∥∥ ,

we only need to construct two extreme numbers of
∥∥∥Ãv

∥∥∥ in order

to derive the required bounds of skmax(A) and skmin(A) with high
probability.

With the constraints v ∈ SN−1 and v ∈ Ψk, we consider in
particular v that satisfies the following form:

v0 =


1
0
0
...
0

 cos θ +



0
c1
...

ck−1

0
...
0


sin θ

∥c(k−1)∥
,

where θ ∈ R, and c(k−1) = [c1, · · · , ck−1]
T denotes the sub-vector

containing the first k − 1 entries of c, i.e. the ones with the k − 1
largest absolute values.

For v0 in such form, we have∥∥∥Ãv0

∥∥∥2

=

∥∥∥∥∥
[
∥a1∥
0

]
cos θ +

[∥∥∥c(k−1)
∥∥∥

b

]
sin θ

∥∥∥∥∥
2

=
(
∥a1∥ cos θ +

∥∥∥c(k−1)
∥∥∥ sin θ)2

+ ∥b∥2 sin2(θ)

=: g(θ),

where

b = B

(
[0, c1, · · · , ck−1, 0, · · · , 0]T ,

1

∥c(k−1)∥

)
is the product of a standard Gaussian matrix B with a unit vector in-
dependent of B, and is therefore an standard Gaussian vector. There-
fore a1, c(k−1) and b are mutually independent, with a1 ∈ Rn and
b ∈ Rn−1 being standard Gaussian vectors, and c(k−1) contain-
ing the elements with the (k − 1)-largest absolute values of N − 1
random variables of standard Gaussian, as previously defined.

We rewrite g(θ) as the following:

g(θ) = A cos2 θ +B sin2 θ + 2C sin θ cos θ,

where

A = ∥a1∥2 ,

B = ∥b∥2 +
∥∥∥c(k−1)

∥∥∥2

,

C = ∥a1∥ ·
∥∥∥c(k−1)

∥∥∥ .
Letting dg(θ)

dθ
= 0, we have

θ =
1

2
arctan

2C

A−B
+

lπ

2
=: θ0 +

lπ

2
, l ∈ Z.

Plugging the extrema of θ into g(θ), we have

skmax(A) ≥ 1√
2

(
A+B +

√
(A−B)2 + 4C2

)1/2

,

skmin(A) ≤ 1√
2

(
A+B −

√
(A−B)2 + 4C2

)1/2

.
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Let’s first calculate the values of A,B, and C asymptotically to
have a rough idea of this, i.e.

lim
n→∞

A/n = 1,

lim
n→∞

B/n = 1 +
kT 2

n
,

lim
n→∞

C/n =

√
kT 2

n
,

Summing up, we have

lim
n→∞

skmax(Φ) = lim
n→∞

1√
n
skmax(A)

≥ 1√
2

(
2 + pT 2 +

√
(pT 2)2 + 4pT 2

)1/2

,

lim
n→∞

skmin(Φ) = lim
n→∞

1√
n
skmin(A)

≤ 1√
2

(
2 + pT 2 −

√
(pT 2)2 + 4pT 2

)1/2

,

where p = limn→∞ k/n, i.e.

lim
n→∞

δ+k ≥ 1√
2

(
2 + pT 2 +

√
(pT 2)2 + 4pT 2

)1/2

− 1,

lim
n→∞

δ−k ≥ 1− 1√
2

(
2 + pT 2 −

√
(pT 2)2 + 4pT 2

)1/2

.

The above results are established asymptotically. The cases for
finite n can be achieved by merely estimating A,B, and C by using
Lemma 1, which is proved in detail in [19].

Lemma 1. [19] Let X1, . . . , Xn denote n i. i. d. Gaussian random
variables, and X(i) denotes the one with the i-th largest absolute
value among them. Define

Tk :=

√√√√ 1

k

k∑
i=1

X2
(i),

and

T =

√
EX2

∣∣∣X2 > t,

where t satisfies P
(
X2 > t

)
= k

n
, then

|ETk − T | < 2
√
2π

T
√
k
,

and

P
(
|Tk − T | > 2

√
2π

T
√
k

+ ε

)
< 2e−

kε2

2 , ∀ε > 0.

5. NUMERICAL SIMULATIONS

In this section, we compare the lower and upper bounds for the RIP
constant by numerical calculations. The bounds for the RIP constant
are calculated according to Theorem 1, 4, 5, respectively. Here,
we fix sparsity levels k/N = (0.1, 0.01, 0.001), P = 0.99, N =
10000, and calculate the bound versus compression rate. Moreover,
to facilitate plotting, we truncate the bounds by 2, i.e., any bound
with value greater than 2 is set to 2. From Fig. 1, we can find that
when compression rate N/n is not too large, the lower bound and
new upper bound very close to each other.
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Fig. 1. Numerical calculation of the lower bound, the upper bound,
and the previous work for the RIP constant (Prev. UB) about com-
pression rate, when fixing sparsity k/N, P = 0.99, N = 10000.
All curves are truncated by 2.

6. CONCLUSION

In this paper, we propose a lower bound for the RIP constant for
the first time, which fills the gap that only upper bound is provided
for the RIP constant. Moreover, we prove that the lower and up-
per bounds have the same order, and hence match in order. Finally,
numerical calculations validate the tightness of the lower and new
upper bound for the RIP constant. Future works may include the
performance analysis of sparse recovery algorithms with both lower
and upper bounds.
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