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ABSTRACT
This paper considers the problem of jointly recovering the
structures of two graphical models with unknown edge struc-
tures. It is assumed that both graphs have the same number
of nodes and a known subset of nodes have identical struc-
tures in both graphs. The classes of Ising models and Gaus-
sian models are considered. For Ising models, the objective is
to recover the connectivity of both graphs under an approxi-
mate recovery criterion. For Gaussian models, the objectives
of edge structure recovery and inverse covariance estimation
are considered. Information-theoretic bounds on the sample
complexity for bounded probability of error under the afore-
mentioned criteria are established and compared with the cor-
responding bounds on the sample complexity for recovering
the graphs independently.

Index Terms— Graphical models, information-theoretic
bounds, joint model selection, structural similarity.

1. INTRODUCTION

Conditional dependence among multiple random vari-
ables can be structurally modeled by graphical models, in
which the random variables form the nodes of the graphs
and their interdependence is captured by the edges among
them [1, 2]. Graph-based models have widespread applica-
tions in many domains, e.g., computer vision [3], genetics
[4–6], social networks [7], and power systems [8]. In this
paper, we consider the problem of joint model selection of a
pair of graphs with partial structural similarity using samples
from their joint distributions, where the focus is on Gaussian
and Ising models. The problem of model selection consists
of edge structure recovery for Ising and Gaussian models
and also inverse covariance matrix estimation for Gaussian
models.

Graphical models with partially similar structures are ef-
fective for modeling inference problems in various domains
such as physical infrastructures [9], biological networks [4],
and behavioral analysis [10]. In such domains, the data is gen-
erated by multiple networks (modeled by graphs), in which
there exists a partial structure common to all networks, while
each network has also a unique partial structure. In such ap-
plications, the data collected from different graphs has redun-
dancy of information that can be leveraged for jointly ana-
lyzing the data from all the relevant models. Motivated by
this premise, we analyze algorithm-independent information-
theoretic bounds on the sample complexity for joint model
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selection of a pair of partially similar graphical models that
belong to the classes of Ising and Gaussian models. Further-
more, we also analyze inverse covariance estimation for a pair
of graphs from the class of Gaussian models.

1.1. Related Work

The problem of graphical model selection is feasible
under certain restrictions on the graph structure, e.g., spar-
sity [11–14]. Such restrictions on the graphical models can
be analyzed by studying graphs with bounded degree and
number of edges. Information-theoretic bounds on the sam-
ple complexity for model selection of single graphs in various
classes of Ising models and Gaussian models have been stud-
ied in [15–18]. In [15] and [16], necessary conditions on the
sample complexity for the exact recovery of sub-classes of
Ising models are established. In [17], the problem of graphi-
cal model selection is investigated for Ising models under the
criterion of approximate recovery, i.e., at most a fixed num-
ber of errors are tolerated in the estimated graph structure.
Necessary conditions for set-based graph model selection,
i.e., a set of graphs that potentially contains the true graph is
identified by the graph estimator, are characterized in [19].

Joint graphical model inference has been investigated
in [4, 5, 10, 20–25] for graphs that may be structurally sim-
ilar. In [5] and [20–23], optimization techniques are used
for joint inference of Gaussian graphical models. In [4]
and [24], Bayesian frameworks are developed for joint model
inference. The aforementioned papers investigate various em-
pirical frameworks for joint graph inference when different
models may be partially similar. In this paper, we focus on
characterizing the sample complexity for joint model selec-
tion of a pair of graphs with same number of nodes that have
the same graph structure within a known cluster of nodes.

2. GRAPH MODEL

Consider a pair of undirected graphs, denoted by G1 ,
(V1, E1) and G2 , (V2, E2), where Vi , {1, . . . , p} and
Ei ⊆ Vi × Vi are the set of p vertices and the set of edges,
respectively, in graph Gi, for i ∈ {1, 2}. We denote the edge
between nodes u, v ∈ Ei, by Eu,vi . Each node j ∈ Vi in
graph Gi is associated with a random variable denoted by Xj

i ,
and the joint probability density function (pdf) of the random
vector Xi , [X1

i , . . . X
p
i ] is denoted by fi(·), for i ∈ {1, 2}.

In this paper, we call Xi as one graph sample. We collect n
graph samples from each graph to perform joint model selec-
tion of G1 and G2. The collection of n samples from graph
Gi is denoted by Xni . Given Xn1 and Xn2 , the graph decoder
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Ĝ(Xn1 ,Xn2 ) , {Ĝ1, Ĝ2} provides the estimates Ĝ1 and Ĝ2 for
G1 and G2, respectively.

Fig. 1. Two graphs with partially similar structures. Yellow
nodes in both graphs have the same internal edge structure.

In this paper, we assume that the graphs G1 and G2 are
structurally identical within a pre-specified cluster of nodes,
i.e., both G1 and G2 have the same internal sub-graph within a
set of nodes Vc ⊆ V1, V2. An example of this setting is illus-
trated in Fig. 1. We establish information-theoretic bounds on
the sample complexity of approximate joint model selection
of the two graphs for Ising models, and that for exact joint
model selection and inverse covariance matrix estimation for
Gaussian models.

3. PROBLEM FORMULATION

We formalize the notation for structurally similar graphs
in the following definition.

Definition 1. A pair of graphs G1 and G2 is said to be
ζ−similar if both graphs have the same internal graphical
structure within a cluster of nodes of size bζpc, for some
ζ ∈ (0, 1).

For both G1 and G2, the edge structures between any pair
of nodes with at least one node not in Vc are assumed to be
structurally independent of each other. For graph Gi, the de-
gree of a node u ∈ Vi is denoted by diu, which captures the
number of nodes in the immediate neighborhood of u (i.e.,
the nodes that are directly connected to u by an edge). Given
the family of graphical models that G1 and G2 belong to, the
pdfs f1 and f2 represent the graphical structure of G1 and G2,
respectively.

3.1. Ising Model

For a graph Gi in the family of Ising models, each node
u ∈ Vi is associated with a binary random variable Xu

i ∈
{−1, 1}. The pdf of the random vector Xi associated with Gi
is given by

fi(Xi) =
1

Zi
exp

 ∑
u,v∈Vi

λuvi Xu
i X

v
i

 , (1)

where

λuvi ,

{
λ, if Eu,vi ∈ Ei
0, otherwise

, (2)

for λ > 0, and Zi is the partition function given by

Zi ,
∑

Xi∈{−1,1}p
exp

 ∑
u,v∈Vi

λuvi Xu
i X

v
i

 . (3)

Note that the parameter λ in (2) controls the dependence
among the nodes in the graph. In [15], it is shown that recov-
ering the graph structure from the data becomes more difficult
as λ approaches 0 or grows to infinity.

We denote the family of Ising models by I, and the fam-
ily of ζ−similar pairs of Ising models by Iζ . Furthermore,
we consider a restricted subclass of Ising models, given by
Iζ,θd,k,η,γ , that consists of pairs of graphs with each graph hav-
ing at most k number of edges and at most bθkc, for some
θ ∈ (0, 1), edges in the cluster with common structure, each
node in the graph having a degree of at most d, and the paths
of length γ or less between any two non-connected nodes in
the graph can be blocked by blocking at most η number of
nodes. For convenience in notations, throughout the paper we
use the shorthand Ī to refer to Iζ,θd,k,η,γ . Restrictions on the
maximum degree and the number of edges in the graph are
motivated by practical applications in which the models are
sparse. Restriction on the number of edges in the graph in
the shared cluster is motivated by the fact that the size of the
shared cluster determines the maximum number of edges al-
lowed within it, which may be significantly less than the total
number of edges allowed in the graphs. Restrictions on the
paths between any two disconnected nodes are of interest as
existing literature suggests polynomial time recovery of the
graphs in several cases [26].

3.2. Gaussian Model

In this paper, we assume that the mean of the pdf associ-
ated with Gaussian model is a zero vector. Hence, for a graph
Gi, the joint distribution of Xi with inverse covariance matrix
Σi is given by

fi(Xi) =
1√

(2π)pdet(Σ−1
i )

exp

(
1

2
XT
i ΣiXi

)
. (4)

Note that the off diagonal elements of Σi reflect the edge
structure of the graph Gi, i.e., the element at a coordinate
(u, v) in Σi, given by Σi(u, v), is non-zero if and only if
Eu,vi ∈ Ei.

We denote the class of Gaussian models by G and the class
of ζ−similar Gaussian graphical models by Gζ . The recovery
of the Gaussian model is contingent upon the matrix elements
of the inverse-covariance matrix [18]. Therefore, for a graph
Gi, we also define

λ∗i , min
u,v∈Vi

| Σi(u, v) |√
Σi(u, u)Σi(v, v)

, (5)

which reflects the scale-invariant minimum value of the ma-
trix Σi.

In this paper, we consider the following sub-class of Gaus-
sian model. A pair of graphical models G1 and G2 belong to
the class Gζd(λ) if and only if they are ζ−similar, have a de-
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gree of at most d, and satisfy min{λ∗1, λ∗2} ≥ λ.

3.3. Recovery Criteria

Given the collection of samples Xn1 and Xn2 , the aim
of the graph decoder Ĝ(Xn1 ,Xn2 ) is to form estimates for
the graphs G1 and G2. We first provide the graph recovery
criteria for Ising models and Gaussian models, which have
been adopted in the existing literature for recovering single
graphs [17, 18].

3.3.1. Ising Model

For Ising models, we adopt an approximate graph recov-
ery criteria, that is, we tolerate at most a pre-specified number
of erroneous decisions, denoted by q ≥ 0, about the edges in
the recovery of each graph. The probability of error in the
approximate graph recovery over the class Ī is defined as

PqĪ , max
G1,G2∈Ī

P
[

min
i∈{1,2}

{|Ei∆Êi|} ≥ q
]
, (6)

where |Ei∆Êi| is the edit distance between Ei and Êi given
by |Ei∆Êi| , |(Ei\Êi) ∪ (Êi\Ei)|. Note that |Ei∆Êi| rep-
resents the number of modifications to be made in the edge
structure to transform Gi to Ĝi, and q characterizes the mis-
match between the estimated and true graphs.

3.3.2. Gaussian Model

As discussed earlier, the Gaussian models are charac-
terized by the inverse covariance matrix and the non-zero
off-diagonal elements represent the edges between the nodes.
Note that the edge structure can be determined by estimating
the support of the inverse covariance matrix (i.e., the non-zero
off-diagonal elements). We list the two recovery criteria used
for Gaussian models as follows.

1. Exact Recovery: Under this criterion, we aim to per-
form joint model selection for the two graphs to recover
the edge structure of both graphs exactly based on the
given collection of graph samples, Xn1 and Xn2 . For
Gaussian models, exact recovery is equivalent to esti-
mating the corresponding support sets of the inverse co-
variance matrices Σ1 and Σ2. We define PG as the prob-
ability of error in exact recovery over the class Gζd(λ),
i.e.,

PG , max
G1,G2∈Gζd(λ)

P[Ĝ(Xn1 ,Xn2 ) 6= (G1,G2)] . (7)

2. Inverse Covariance Matrix Estimation: Under this cri-
terion, the graph decoder aims to estimate the inverse
covariance matrices Σ1 and Σ2. Note that estimating
the numerical values of the inverse covariance matrix
and estimating the support set of the inverse covariance
matrix are fundamentally different tasks [18]. Define
Σ̂i as the estimate of Σi. Then, the maximal probabil-
ity of error in the inverse covariance matrix estimation

is defined as

P̃G(δ) ,

max
G1,G2∈Gζd(λ)

P
[

min
i∈{1,2}

‖Σ̂i − Σi‖∞ < δ/2

]
, (8)

where ‖ · ‖∞ denotes the `∞-norm.

3.4. Comparison with Existing Works

When graphs G1 and G2 are recovered jointly under the
aforementioned criteria, a total of 2n graph samples are used,
for which we establish performance guarantees on the prob-
ability of error for the corresponding criterion. Let ns be the
number of samples necessary for recovering a single graph
under the different criteria with the same performance guar-
antees. Such sample complexities have been analyzed in [17]
and [18]. To analyze the difference between the two settings,
we define D , 2(ns − n).

4. MAIN RESULTS

In this section, we provide the necessary conditions on the
sample size n for any graph decoder to recover a pair of struc-
turally similar graphs, and compare them with the existing
results for single graphs. Note that the necessary conditions
provided in this paper are algorithm-independent and there-
fore, provide benchmarks for the sample complexity analysis
of any designed algorithm.

4.1. Ising Models

We provide the results for approximate recovery of
ζ−similar graphs in the class Ī, and discuss the scaling
behavior of the gap between the results in this section and the
existing results for single graphs. To describe the results for
this setting, we denote the binary entropy function by

h(θ) , −θ log θ − (1− θ) log(1− θ), for θ ∈ (0, 1) . (9)

Theorem 1 (Class Ī with k ≤ p/4). Consider a pair
of ζ−similar graphs G1 and G2 in the class Ī with pa-
rameters k ≤ p/4 and η ≤ bd2c. For any graph de-
coder Ĝ : Xn1 ×Xn2 → Ī that tolerates the distortion q =

bβ b(cη−1)2k
2cη(2η+m(γ+1))c for somem ∈ {0, . . . , bd2c−η}, β ∈ (0, 1

2 )

and c ∈ (1/η, 1], and achieves PqĪ ≤ δ, the sample complexity
satisfies

n ≥ max {A1, A2} (1− δ − o(1)) , (10)

where we have defined

A1 ,
2(1− θ)k log(p(1− ζ)) + kθ log(ζp)− 2q log p

kλ tanhλ
,

(11)

A2 ,

(
1 + (cosh 2λ)(1−c)η−1

(
1+(tanhλ)γ+1

1−(tanhλ)γ+1

)m)
2λcη

× ((1− ζ/2) log 2− h(β)) . (12)
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To gain more insight from Theorem 1, we note that the terms
A1 and A2 have different scaling behavior in λ, p, and d.
Therefore, it is imperative to explore different regimes of vari-
artion of parameters that characterize the sample complexity.

1. λ = ω(min{1/√η, 1/m
1
γ+1 }: In this regime, we can

verify that the term A2 grows exponentially in λ2η
and λγ+1m, and dominates the sample complexity.
By comparing A2 with the corresponding result for a
single graph, we observe that D scales exponentially in
λ2η and λγ+1m.

2. λ = O(min{1/√η, 1/m
1
γ+1 }: In this regime, the term

A1 dominates the sample complexity and as λ → 0,
tanhλ scales according to O(λ) and therefore, A1

scales according to Ω(max{η,m
2
γ+1 } log p). Also, by

comparing with the corresponding result for a single
graph, we conclude that D scales at the same rate as
the sample complexity, i.e., Ω(max{η,m

2
γ+1 } log p).

4.2. Gaussian Models

In this section, we consider the class of Gaussian graph-
ical models and provide information-theoretic bounds on the
sample size n for recovering ζ−similar graphs.

4.2.1. Exact Recovery

Theorem 2 (Class Gζd(λ)). For a pair of ζ−similar graphs G1

and G2 in class Gζd(λ) with λ ∈ [0, 1
2 ], for any graph decoder

Ĝ : Xn1 ×Xn2 → G
ζ
d(λ) that achieves PG

n→∞−−−−→ 0, the sample
size n for each graph satisfies

n > max{B1, B2}(1− δ − o(1)) , (13)

where we have defined

B1 , max

{
log
(
ζp−d

2

)
− 1

8λ2
,

log
(
p−ζp−d

2

)
− 1

4λ2

}
, (14)

B2 ,max

 log
(
ζp
d

)
− 1

log
(

1 + dλ
1−λ

)
− dλ

1+(d−1)λ

,

log
(
p−ζp
d

)
− 1

1
2 log

(
1 + dλ

1−λ

)
− dλ

1+(d−1)λ

 . (15)

We compare the results in Theorem 2 with that in [18]. Note
that the terms B1 and B2 have different scaling behavior with
respect to λ, and therefore it is imperative to characterize the
scaling behavior of all the terms to characterize the gain in
sample complexity under joint model selection over model
selection of a single graph.

1. λ = Θ( 1
d ): In this regime, the sum of edge weights

in the neighborhood of every node remains bounded.
Also, B1 and B2 scale differently with λ. The terms
B1 scale according to Ω(d2 log(max{ζ, 1− ζ}p− d)).
Also, the first term in B1 is dominant when ζ → 1.
The corresponding result for a single graph from [18]

is 1
4λ2

(
log
(
p−d

2

)
− 1
)

. Therefore, under the regime
when B1 dominates the sample complexity, we have
D = Ω(d2 log(max{ζ, 1− ζ}p− d)).

2. λ = O(1) and λ ∈ [0, 1/2]: In this regime, the sam-
ple complexity is dominated by B2 which scales as
Ω
(
d log(p/d)
log(1+dλ)

)
. By comparison with the correspond-

ing result for recovering a single graph, we have D =

Ω
(
d log(p/d)
log(1+dλ)

)
in this regime.

4.2.2. Inverse Covariance Matrix Recovery

Theorem 3. For a pair of ζ−similar graphs G1 and G2 in
class Gζd(λ), if there exists a graph decoder such that P̃G ≤
1/2, then the sample complexity satisfies

n > max

 log
(
ζpd
4

)
− 2

8δ2
,

log
(

(1−ζ)pd
4

)
− 2

4δ2

 . (16)

The bound in (16) captures the sample complexity corre-
sponding to inverse covariance matrix estimation of ζ−similar
pair of graphs. In [18], the corresponding result for a single

graph is
log( pd4 )−2

4δ2 . It can be shown that D = 1
4δ2 log

(
pd
4ζ

)
when 1

8δ2

(
log
(
ζpd
4

)
− 2
)

dominates, i.e., the shared clus-
ter of the graph pair consists of more edges than the non
shared cluster. When 1

4δ2

(
log
(

(1−ζ)pd
4

)
− 2
)

dominates,

D = 1
2δ2 log(1− ζ). Clearly, for fixed ζ, the variation scales

with δ and becomes significantly large as δ → 0. However,
when the shared cluster is denser compared to the non-shared
cluster of the graph pair, the bound on the sample complexity
scales with Ω(d2 log(pd)) when δ = O(1/d). Also, D scales
according to Ω(d2) when δ = O(1/d).

5. CONCLUSION

In this paper, we have analyzed the problem of joint model
selection of partially similar graphical models in the path-
restricted, edge and degree bounded sub-class of Ising mod-
els and the degree bounded sub-class of Gaussian models. For
Ising models, we have characterized the information-theoretic
bounds on the sample complexity for approximate recovery
of the graph structures. For Gaussian models, we have estab-
lished the information-theoretic bounds on the sample com-
plexity for exact recovery of the graph structures and inverse
covariance matrix estimation. We have also investigated the
scaling behavior of the difference between the sample com-
plexity for joint model selection and that for single graphs
from the results in existing literature.
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