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ABSTRACT

The derivation of tight estimation lower bounds is a key player to
design and assess the performance of new estimators. Considering
a generic band-limited signal formulation and constant transmitter
to receiver propagation delay, we propose a novel compact closed-
form expression of the Cramér-Rao bound for time-delay estimation.
This new formulation, especially easy to use, allows to derive the
best (lowest) Cramér-Rao bound for a band-limited signal of given
length and energy, which provides an estimation performance loss
metric. These results are illustrated with two representative band-
limited signals.

Index Terms— Time-delay estimation, Band-limited signals,
Mean squared error, Cramér-Rao bound.

1. INTRODUCTION

Time-delay estimation has been a research topic of significant prac-
tical importance in many fields (radar, sonar, ultrasonics, commu-
nications, navigation, ...) [1–5]. It is often a first stage that feeds
into subsequent processing blocks for identifying, localizing, and
tracking radiating sources [6]. Ranging from frequentist approaches
to the most advanced Bayesian techniques, several estimators ex-
ist to perform such task [7–13]. When designing and assessing new
time-delay estimation techniques, it is fundamental to know the opti-
mal estimation performance. The deterministic Cramér-Rao Bounds
(CRB) [14, 15] has been shown to give accurate estimation lower
bounds on the mean squared error (MSE) in estimating determinis-
tic parameters under certain conditions (i.e., in the high signal-to-
noise (SNR) regime) [16]. Even if several time-delay estimation
CRB expressions have been already derived for different applica-
tions [17–21], an easy to use compact CRB for band-limited signals
is not available, whereas a compact CRB for infinite bandwidth sig-
nals has already been given in [22].

As a contribution to this research field, assuming a constant
transmitter to receiver propagation delay, we recast the well known
CRB for time-delay estimation [17,23] into a novel (to the best of our
knowledge) compact closed-form expression fitted for generic band-
limited transmitted signal. The first merit of this new formulation is
to be especially easy to use since it involves only matrix computa-
tions. Its second merit is to allow to derive the best (lowest) CRB
for a band-limited signal of given length and energy, which is new
as well. It is noteworthy that this accuracy limit of time-delay esti-
mation provides an estimation performance loss metric which could

J. Vilà-Valls was previously with the Statistical Inference Department
at CTTC (Spain), and this work was partially supported by the EC in the
framework of the COST Action CA15104 (IRACON).

be used for an optimal signal design. The proposed new results are
illustrated with two representative band-limited signals.

2. SIGNAL MODEL

As an example of time-delay estimation problem, let us consider the
line-of-sight transmission of a band-limited signal c(t) with band-
width B, from a transmitter T at position pT (t) to a receiver R at
position pR (t), expressed both in time and frequency as

c (t) =
N′

2∑
n=−N′

1

c
( n
B

)
sinc

(
πB
(
t− n

B

))
, (1a)

c (f) =
1

B

N′
2∑

n=−N′
1

c
( n
B

)
e−j2πn

f
B ,
−B
2
≤ f ≤ B

2
. (1b)

Considering that the signal is transmitted over a carrier with fre-
quency fc (wavelength λc = c/fc), the complex analytic signal at
the output of the receiver’s antenna can be written as,
xA(t) = αRcR(t) + nA(t), with nA(t) a zero-mean white com-
plex circular Gaussian noise, αR = β fR(fc,−u(t))·fT (fc,u(t))

‖pTR(t)‖ , β =
λc
4π

√
PT
√
gT (fc,u (t))

√
gR (fc,−u (t)), PT the transmitted sig-

nal power, {gT , gR, fT , fR} the transmitter/receiver antenna gains
and polarization vectors, u (t) = pTR (t) / ‖pTR (t)‖, pTR (t)
the radial distance between T and R [24, 25]. If the transmitter
to receiver distance is constant (constant propagation delay), i.e.
‖pTR (t)‖ , ‖pR (t)− pT (t− τ (t))‖ = cτ , then:

cR (t) = e−j2πfcτej2πfctc (t− τ) , (2)

and the baseband output of the receiver’s Hilbert filter is

x (t) = xA (t) e−j2πfct = αc (t− τ) + n (t) , (3)

with f ∈
[
−Fs

2
, Fs

2

]
, Fs ≥ B the Hilbert filter bandwidth, n(t) a

complex white circular Gaussian noise within this bandwidth with
unknown variance σ2

n, and α = αRe
−j2πfcτ . The discrete vector

signal model is build from N = N1 + N2 + 1 (N1/Fs � N ′1/B,
N2/Fs � N ′2B) samples at Ts = 1/Fs,

x = αc (τ) + n, (4)

with signal samples x = (x (−N1Ts) , . . . , x (N2Ts))
>, noise sam-

ples n = (n (−N1Ts) , . . . , n (N2Ts))
>, and code samples c (τ) =

(c (−N1Ts − τ) , . . . , c (N2Ts − τ))>. Since {gT , gR, fT , fR} are
generally not perfectly known, classically αR, and hence α, is as-
sumed to be an unknown complex parameter as well [1–3, 25, 26].
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Thus, the unknown deterministic parameters [27] can be gathered in
vector ε =

(
σ2
n, τ , α, α

∗)>, where α∗ is the complex conjugate of
α. Note that the same signal model (4) can be obtained if instead of
line-of-sight transmission, one considers transmission via diffraction
(scatterer), reflexion (reflector) or combination of the three (multi-
paths) for static scenarios [2, 25].

3. BACKGROUND

Let S = span (A), with A a matrix, be the linear span of the set
of its column vectors, ΠA = A

(
AHA

)−1
AH the orthogonal pro-

jection over S, and Π⊥A = I−ΠA. The CRB is given by the inverse
of the Fisher information (FI), CRBτ |ε

(
ε0
)

= 1/Fτ |ε
(
ε0
)
, with ε0

a selected value of ε. If we define the function

Φ (τ) =
∂c (τ)

∂τ

H

Π⊥c(τ)
∂c (τ)

∂τ
=

∥∥∥∥∂c (τ)

∂τ

∥∥∥∥2 −
∣∣∣c (τ)H ∂c(τ)

∂τ

∣∣∣2
‖c (τ)‖2

(5)
the FI associated to the problem of interest is given by [23, 26]

Fτ |ε (ε) =
2 |α|2 <{Φ (τ)}

σ2
n

=
|α|2 ‖c (τ)‖2

σ2
n

(
2<{Φ (τ)}
‖c (τ)‖2

)
.

(6)
Since c(t) is a band-limited signal, by virtue of the Nyquist-Shannon
theorem we have that [17]

lim
min(N1,N2)→∞

<{Φ (τ)} = Fs

(
w2 −

|w3|2

w1

)
, (7a)

w1 =
+∞∫
−∞

c (t) c (t)∗ dt, (7b)

w2 =
+∞∫
−∞

c(1) (t) c(1) (t)∗ dt, (7c)

w3 =
+∞∫
−∞

c(1) (t) c (t)∗ dt, (7d)

wherew1 = E is the energy of the signal, and c(1) (t) = dc(t)
dt

. Thus
(6) can be recast as:

Fτ |ε (ε) =
2 |α|2(
σ2
n
Fs

)w1

(
w2

w1
−
∣∣∣∣w3

w1

∣∣∣∣2
)

= 2
|α|2 E(
σ2
n
Fs

) (4π2B2) (8a)

where B is the equivalent bandwidth of c (t), defined as the square-
root of the variance of its spectrum where the probability density
function p (f) is defined as follows [28, §2.8.5]:

B =
√
V ar (f), p (f) =

|c (f)|2
Fs
2∫
−Fs

2

|c (f)|2 df

=
|c (f)|2

E
. (8b)

It is then easy to check that B ≤Fs
2

, leading to:

Fτ |ε (ε) ≤ 2
|α|2 E(
σ2
n
Fs

)F 2
s π

2 (8c)

3.1. Maximum Likelihood Estimation and Ambiguity Function

Considering the signal model (4), the maximum likelihood (ML)
time-delay estimate is defined as [26]

τ̂ = arg min
τ

{
xHΠ⊥c(τ)x

}
= arg max

τ


∣∣∣c (τ)H x

∣∣∣2
c (τ)H c (τ)

 (9)

=
min(N1,N2)→∞

arg max
τ



∣∣∣∣∣+∞∫−∞ c (t− τ)∗ x (t) dt

∣∣∣∣∣
2

+∞∫
−∞
|c (t)|2 dt


, (10)

and the maximum SNR at the output of the ML matched filter is:

SNRout =

∣∣∣∣∣+∞∫−∞ c (t− τ)∗ αc (t− τ) dt

∣∣∣∣∣
2

E

[∣∣∣∣∣+∞∫−∞ c (t− τ)∗ n (t) dt
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2]

=

|α|2
(

+∞∫
−∞
|c (t)|2 dt

)2

(
σ2
n
Fs

) B
2∫
−B

2

|c (f)|2 df

=
|α|2 E(
σ2
n
Fs

) . (11)

Last, the corresponding ambiguity function is given by [25]

Ξ
(
τ ; τ0

)
=

∣∣∣∣∣ c (τ)H c
(
τ0
)

‖c (τ)‖ ‖c (τ0)‖

∣∣∣∣∣
2

(12)

which can be approximated by its 2nd order Taylor expansion

Ξ
(
τ0 + dτ ; τ0

)
' 1− 1

2

(
2<
{

Φ
(
τ0
)}

‖c (τ0)‖2

)
dτ2, (13)

where the second term is directly related to (6).

4. ACCURACY LIMIT OF TIME-DELAY ESTIMATION
WITH A BAND-LIMITED SIGNAL

From a practical point of view, it may be interesting to obtain a CRB
expression in terms of the SNRout, which is typically used to char-
acterize the receiver operation point. Thus (8a) can be recast as:

Fτ |ε (ε) = 2SNRout
(
4π2B2) ≤ 2SNRoutF

2
s π

2. (14)

So far the only known FI upper bound defining the accuracy limit of
time-delay estimation with a band-limited signal was given by (8c),
as explictly recalled in (14). However (8c) does not take into account
the length of the support of the time-series, e.g. {c (nTs)}n∈Z, as-
sociated to a band-limited signal, e.g. c (t) (3). Therefore, from a
system design point of view, it may be desirable to obtain a tighter
FI upper bound depending on the length of the band-limited signal1.

1In following, the length of the support of the time-series associated to
a band-limited signal is simply referred to as the length of a band-limited
signal.
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Indeed, in many transmission scenarios, especially in communica-
tions, only part of the samples transmitted is known, the so-called
”training sequence” [3, 4], and are used for time-delay estimation
(a.k.a synchronization in that context). In order to optimize the data
transfer rate for a given frequency band (Fs), the length of the ”train-
ing sequence” must be as small as possible while satisfying a given
time-delay estimation accuracy. In most monostatic radar [25, 29],
the radar blind range corresponds to the situation in which a radar
transmitter is on and hence the receiver must be off, so that the radar
transmitted signal does not saturate, i.e., does not blind, its own re-
ceiver. Similarly, in order to reduce the blind range, the length of
the radar pulse must be as small as possible while satisfying a given
time-delay estimation accuracy.
To obtain a tighter FI upper bound depending on the length of the
band-limited signal, we introduce a novel (to the best of our knowl-
edge) closed-form of the time-delay FI (14) depending only on the
samples of a band-limited signal.

4.1. Closed-form Time-delay CRB

The goal is to obtain closed-form expressions of (7b-7d) depending
only on the samples of a band-limited signal, which derivations are
detailed in the sequel. Let c , c (0); then:

w1 =
+∞∫
−∞

c (t) c (t)∗ dt = cHcTs =
1

Fs
cHc (15)

w2 =
+∞∫
−∞

∣∣∣c(1) (t)
∣∣∣2 dt =

Fs
2∫
−Fs

2

|(j2πf) c (f)|2 df

=

Fs
2∫
−Fs

2

(2πf)2

∣∣∣∣∣ 1

Fs

N2∑
−N1

c (nTs) e
−j2πfnTs

∣∣∣∣∣
2

df

= Fs

1
2∫
− 1

2

(2πf)2
∣∣∣cTν∗ (f)

∣∣∣2 df = Fsc
HVc, (16)

where ν (f) =
(
ej2πf(−N1), . . . , ej2πf(0), . . . , ej2πf(N2)

)>
and

V = 4π2
∫ 1

2

− 1
2

f2ν (f)ν (f)H df . The diagonal elements of V,

i.e. Vn,n′ (n′ = n), are given by:

4π2

1
2∫
− 1

2

f2df = 4π2

[
f3

3

] 1
2

− 1
2

=
π2

3
,

and the off-diagonal elements, i.e. Vn,n′ (n′ 6= n), are given by:

4π2

1
2∫
− 1

2

f2ej2π(n−n′)fdf = (−1)|n−n
′| 2

(n− n′)2
.

Moreover, sincew2 > 0 if c 6= 0, V is a symmetric positive definite
real-valued matrix. Following a similar approach as above, we have

w3 =
+∞∫
−∞

c(1) (t) c (t)∗ dt =

Fs
2∫
−Fs

2

(j2πf) |c (f)|2 df

=

Fs
2∫
−Fs

2

(j2πf)

∣∣∣∣∣ 1

Fs

N2∑
−N1

c (nTs) e
−j2πfnTs

∣∣∣∣∣
2

df

=

1
2∫
− 1

2

(j2πf)
∣∣∣cTν∗ (f)

∣∣∣2 df = cHΛc, (17)

where Λ = j2π
∫ 1

2

− 1
2

fν (f)ν (f)H df . The diagonal elements of

Λ, i.e. Λn,n′ (n′ = n), are given by:

j2π

1
2∫
− 1

2

fdf = j2π

[
f2

2

] 1
2

− 1
2

= 0,

and the off-diagonal elements, i.e. Λn,n′ (n′ 6= n), are given by:

j2π

1
2∫
− 1

2

fej2π(n−n′)fdf =
(−1)|n−n

′|

(n− n′) .

Finally, another closed-form of (8a)(14) is:

Fτ |ε (ε) = 2SNRoutF
2
s

(
cHVc

cHc
−
∣∣∣∣cHΛc

cHc

∣∣∣∣2
)
. (18a)

Note that for real band-limited signals c (t), (18a) reduces to

Fτ |ε (ε) = 2SNRoutF
2
s

(
cHVc

cHc

)
, (18b)

since w3 = 0. It is noteworthy that (18a-18b) is especially easy to
use since it involves only matrix computations.

4.2. Optimal Band-limited Signal for Time-Delay Estimation

The novel analytic expression of the FI for time-delay estimation
with a band-limited signal (18a) can be used to find the optimal
signal with given length N (N = N2 +N1 + 1) and energy E (or
SNRout) which minimizes the CRB. Mathematically this reads,

cb = arg max
c

{
cHVc

cHc
−
∣∣∣∣cHΛc

cHc

∣∣∣∣2 s.t. cHc = FsE

}
. (19)

Let UDU> = V ∈ RN×N be the eigendecomposition of V, where
D1,1 ≥ D2,2 ≥ · · · ≥ DN,N > 0 are the eigenvalues of V and the
columun vectors of U = [u1 u2 . . .uN ] ∈ RN×N are the associ-
ated eginvectors. Then

∀c ∈ CN :
cHVc

cHc
−
∣∣∣∣cHΛc

cHc

∣∣∣∣2 ≤ cHVc

cHc
≤ D1,1. (20)

As a consequence, the band-limited signal cb ∈ CN which mini-
mizes the CRB (i.e., maximizes the FI) must verify the following
conditions: 1) (cb)HVcb

(cb)Hcb
= D1,1, 2) (cb)HΛcb = 0, and 3) the

energy constraint (cb)Hcb = E/Ts.
The signal which verifies these three conditions is cb , ejφ

√
FsEu1:

◦ u1 ∈ RN ⇒ uH1 Λu1 = 0 ⇒
(
cb
)H

Λcb = 0.

◦ (cb)HVcb

(cb)Hcb
=

uH
1 Vu1

uH
1 u1

= D1,1 s.t.
(
cb
)H

cb = FsE.

Thus, the maximum FI for time-delay estimation with given length
N and energy E (or SNRout) is given by:

Fτ |ε (ε) ≤ 2 |α|2 E(
σ2
n
Fs

) F 2
sD1,1 = 2SNRoutF

2
sD1,1. (21)

The variation of D1,1 as a function of the length of a band-limited
signal is displayed in Fig. 1. One can notice that lim

N→∞
D1,1 = π2,
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Fig. 1: D1,1 versus the length of a band-limited signal
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Fig. 2: CRB and MLE for two band-limited signals, 1) a GPS L1
C/A PRN code and 2) a LFM chirp signal.

which means that for a given energy E the highest FI (8c), and thus
the lowest CRB, is obtained when the band-limited signal length be-
comes large. Moreover, Fig. 1 allows to quantify how large N must
be; for instance if N ≥ 14 then D1,1 ≥ 0.9π2, which means that
forN ≥ 14 the accuracy limit of time-delay estimation with a band-
limited signal of given energy E does not depend on its length. Last,
for signal design purpose, (21) can be used to define a performance
loss or accuracy index ρ ∈ [0, 1] for a given band-limited signal:

ρ =
CRBopt
CRBc

=

cHVc
cHc

−
∣∣∣ cHΛc

cHc

∣∣∣2
D1,1

(22)

5. VALIDATION

We first assess the validity of the new closed-form CRB in (18a) with
two representative band-limited signals, namely, i) a GPS L1 C/A
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Fig. 3: Ambiguity function and its 2nd order Taylor expansion for a
GPS code (top) and a LFM chirp signal (bottom).

PRN code with length 1023, and ii) a Linear Frequency Modulated
(LFM) chirp signal, with a bandwidth equal to half the sampling
frequency and length 1023. The CRB and the corresponding ML es-
timate (MLE) in (9), obtained from 1000 Monte Carlo runs and with
α = ((1 + j)/

√
2)
√

SNRin, are shown in Fig. 2. For comparison
we also plot the optimal CRB (8c) obtained with cb =

√
EFsu1.

Since (4) belongs to the set of conditional signal models [30], the
MLE converges to the CRB at high SNR [16]. Therefore Fig. 2
confirms the exactness of the proposed CRB (18a). If we compare
these bounds to the optimal, we obtain that ρPRN = 0.331 and
ρLFM = 0.0833, which represent a performance loss of 4.8 dB
and 10.8 dB, respectively. To complete the demonstration of the ex-
actness of (18a), we plot the ambiguity function for both signals in
Fig. 3, which is compared with its 2nd order Taylor expansion (13).
To compute the latter, Φ (τ) has been updated according to (15-17).
The perfect match of the 2nd order Taylor expansion is also a proof
of the exactness of (18a).

6. CONCLUSION

In this contribution, we first derived a novel CRB closed-form ex-
pression for the time-delay estimation, considering a generic band-
limited transmitted signal and constant transmitter to receiver prop-
agation delay. This new formulation is especially easy to use and
allows to derive the best (lowest) CRB for a signal of given length
and energy, which provides an estimation performance loss metric.
This estimation performance loss metric could be used for an op-
timal signal design, when optimality is expressed in terms of esti-
mation accuracy and other features such as delay matched filter side
lobes level [29] and/or peak-to-average power ratio [31].
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