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ABSTRACT
It has been shown lately that any ”standard” Bayesian lower
bound (BLB) on the mean squared error (MSE) of the Weiss-
Weinstein family (WWF) admits a ”tighter” form which upper
bounds the ”standard” form. Applied to the Bayesian Cramér-
Rao bound (BCRB), this result suggests to redefine the concept
of efficient estimator relatively to the tighter form of the BCRB,
an update supported by a noteworthy example. This paper lays the
foundation to revisit some Bayesian estimation problems where the
BCRB is not tight in the asymptotic region.

Index Terms— Mean Squared Error, Bayesian Lower Bounds,
Bayesian Cramér-Rao bound, Minimum Mean Squared Error.

I. INTRODUCTION
Extracting parameter estimates from noisy observations of an

underlying signal is a common problem in fields such as signal
processing, communications, system identification, control and eco-
nomics. The problem has generated a myriad of different parameter
estimation algorithms, see for instance [1] [2]. This paper is
concerned with establishing fundamental lower bounds (LBs) on
how well these algorithms may be expected to perform in the
mean squared error (MSE) sense. Indeed, minimal performance
bounds allow for calculation of the best performance that may
be achieved in the MSE sense and are, hence, a very useful
system analysis tool. Specifically, they allow a system designer to
probe how parameter estimation accuracy is influenced by various
system design decisions. This analysis is free from the mechanistic
details of a particular parameter estimation algorithm. There are
two main categories of lower bounds [2]. Those that evaluate the
”locally best” behaviour of the estimator and those that consider
the ”globally best” performance. In the first case, the parameters
being estimated are considered to be deterministic, whereas the
second category considers the parameters as random variables
with an a priori probability. This paper is concerned with the
second category of bounds concerning random parameters, which
are named Bayesian lower bounds (BLBs).

Historically, the Bayesian Cramér-Rao bound (BCRB), was the
first BLB to be derived [3] [4] [5], and is still the most commonly
used BLB, which is largely due to its simplicity of calculation.
Nevertheless, it is now well known that the BCRB is an optimistic
bound in a non-linear estimation problem where the outliers effect
generally appears, leading to a quick increase of the MSE: this is
the so-called threshold effect which is not predicted by the BCRB.
Since the knowledge of the particular value for which the threshold
effect appears is a key feature allowing to define estimators optimal
operating area, tightness [6] [7] [9] [10] is a prominent quality
looked for a BLB in non-linear estimation problems. This has led
to a large body of research based, so far, on two main families,
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i) the Ziv-Zakai family (ZZF) resulting from the conversion of an
estimation bounding problem into one bounding binary hypothesis
testing [6] [7] [8] and, ii) the Weiss-Weinstein family (WWF),
derived from a covariance inequality principle [3]- [5], [9]- [27],
lately used also for the derivation of Bayesian cyclic bounds for
periodic parameter estimation [28]- [30]. In each family, some
bounds, generally called ”large-error” bounds (in contrast with
”small-error” bounds such as the BCRB), can predict the threshold
effect [2]. Interestingly enough, authors in [31] have lately shown
that any ”standard” BLBs of the WWF admits a ”tighter” form
which upper bounds the ”standard” form. Indeed, if we consider the
simple case of estimating a single real-valued random parameter1

θ ∈ Θ ⊂ R from a N -dimensional real-valued random observation
vector x ∈ X ⊂ RN , then φ (x, θ) = (φ1 (x, θ) , . . . , φL (x, θ))T

where Eθ|x [φl (x, θ)] = 0 for a.e. x ∈ X , 1 ≤ l ≤ L, are BLB-
generating functions of the WWF [20, (6)] [12, (1)] [23] and:

Ex,θ

[(
θ − Eθ|x [θ]

)2] ≥
Ex

[
Eθ|x [θφ (x, θ)]T Eθ|x

[
φ (x, θ)φ (x, θ)T

]−1

×Eθ|x [θφ (x, θ)]

]
≥

Ex,θ [θφ (x, θ)]T Ex,θ

[
φ (x, θ)φ (x, θ)T

]−1

×Ex,θ [θφ (x, θ)]
(1)

where Eθ|x [θ] is the minimum MSE (MMSE) estimator of θ and
the right-hand side of the above inequality is the ”standard” form
of a BLB of the WWF. Moreover in [31] a ”closeness condition”
in order to obtain a ”standard” form equal to the ”tighter” form
of any BLB of the WWF has been derived. Interestingly enough,
this condition is unlikely to be met in most of estimation problems
where the ”tighter” form is a strict upper bound on the ”standard”
form, which may explain why the ”standard” BLBs of the WWF
are not always as tight as expected.

To highlight this recent theoretical result, we tackle the problem
of estimating the variance σ2, i.e. θ , σ2, of a zero-mean Gaussian
random variable where the a priori pdf of σ2 follows a beta
distribution [2, p7]. In this problem, the BCRBs is not tight in the
large sample regime and the maximum a posteriori (MAP) estimate
seems not to be efficient [2, p11]. We say ”seems” because we show
that the tighter BCRB (TBCRB) derived from (1) converges in the
large sample regime towards the MSE of the MAP, and towards
the MMSE as well. It is a sound evidence that the existence of the
TBCRB suggests to introduce an updated definition of efficiency
and an updated class of efficient estimators. For didactic purposes,

1Throughout the present paper scalars, vectors and matrices are repre-
sented, respectively, by italic, bold lowercase and bold uppercase characters.
The matrix/vector transpose is indicated by a superscript T . tr (A) denotes
the trace of matrix A. ”s.t.” stands for ”subject to”, ”w.r.t.” stands for
”with respect to” and ”a.e.” stands for ”almost every”. ”i.i.d.” stands for
independent and identically distributed.
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we introduce an alternative and simpler derivation of the TBCRB
than the one provided in [31] to establish (1) valid for any BLB of
the WWF.

From a more general perspective, one of the merits of the paper
is to show with a noteworthy example that the general class of
BLBs tighter than the WWF proposed in [31], referred to as the
tighter WWF (TWWF) of BLBs hereinafter, are of interest from a
practical point of view. Indeed it is clear that the main drawback of
the BLBs of the TWWF (1) is that they are unlikely to be arranged
in closed form, in general, due to the presence of the statistical
expectation; they can however have a closed form for the TBCRB
or be evaluated by numerical integration or Monte Carlo simulation.

II. TIGHTER BAYESIAN CRAMÉR-RAO BOUNDS AND
AN UPDATED DEFINITION OF EFFICIENCY

In this section, for didactic purposes, we consider a completely
different approach than the one previously used in [31], which
allows to introduce an alternative and simpler derivation of the
TBCRB associated to the estimation of θ. In return, the proposed
derivation can not be extended to the problem of estimating any
g (θ). If g (θ) 6= θ, then (1) must be used directly.
First, from the definition of the mean, for a.e. x ∈ X :

Eθ|x

[(
θ − θ̂ (x)

)2
]
≥ Eθ|x

[(
θ − Eθ|x (θ)

)2]
.

Second, from the covariance inequality [2] [32], ∀φ (x, θ) s.t.
Eθ|x[φ (x, θ)] <∞ for a.e. x ∈ X , then for a.e. x ∈ X :

Eθ|x

[(
θ − Eθ|x (θ)

)2] ≥ Eθ|x
[(
θ − Eθ|x (θ)

)
φ (x, θ)

]2
Eθ|x

[
φ (x, θ)2] .

Hence for a.e. x ∈ X :

Eθ|x

[(
θ − θ̂ (x)

)2
]
≥
Eθ|x

[(
θ − Eθ|x (θ)

)
φ (x, θ)

]2
Eθ|x

[
φ (x, θ)2] .

Moreover, if φ (x, θ) is a BLB-generating function of the WWF,
i.e. Eθ|x [φ (x, θ)] = 0 for a.e. x ∈ X , therefore for a.e. x ∈ X :

Eθ|x

[(
θ − θ̂ (x)

)2
]
≥
Eθ|x [θφ (x, θ)]2

Eθ|x
[
φ (x, θ)2] ,

which leads to:

Ex,θ

[(
θ − θ̂ (x)

)2
]
≥ Ex

[
Eθ|x [θφ (x, θ)]2

Eθ|x
[
φ (x, θ)2]

]
. (2)

In the particular case where φ (x, θ) = ∂ ln p (θ|x) /∂θ, un-
der some mild regularity conditions (see [24, Section III]),
Eθ|x [θφ (x, θ)] = 1 and (2) leads to the TBCRB:

Ex,θ

[(
θ − θ̂ (x)

)2
]
≥ Ex

[
Eθ|x

[(
∂ ln p (θ|x)

∂θ

)2
]−1]

.

(3a)
Indeed, by the Jensen’s inequality [32], one obtains that:

Ex,θ

[(
θ − θ̂ (x)

)2
]
≥ Ex

[
Eθ|x

[(
∂ ln p (θ|x)

∂θ

)2
]−1]

≥ Ex,θ

[(
∂ ln p (θ|x)

∂θ

)2
]−1

, (3b)

where the right-hand side of the above inequality is the ”standard”
BCRB, more well-known as:

BCRB = Ex,θ

[(
∂ ln p (x, θ)

∂θ

)2
]−1

. (3c)

II-A. An updated class of efficient estimators
The covariance inequality (3a) becomes an equality [32]

if the a posteriori pdf p (θ|x) satisfies ∂ ln p (θ|x) /∂θ =

k (x)
(
θ̂ (x)− θ

)
for a.e. x ∈ X , that is:

∂ ln p (θ|x)

∂θ
= Eθ|x

[
∂ ln p (θ|x)

∂θ

2](
θ̂ (x)− θ

)
. (4a)

Let ∂2µ (θ,x) /∂2θ = Eθ|x

[
∂ ln p(θ|x)

∂θ

2
]

= 1/σ2
θ|x. Then (4a)

yields:

ln p (θ|x) =
∂µ (θ,x)

∂θ

(
θ̂ (x)− θ

)
+ µ (θ,x) , (4b)

where ∂µ (θ,x) /∂θ = θ/σ2
θ|x+u (x) and µ (θ,x) = θ2/σ2

θ|x/2+
u (x) θ + h (x). Finally, after some straightforward calculus, it
appears that p (θ|x) solution of (4a) is of the form:

p (θ|x) =
e
− 1

2σ2
θ|x

(θ−θ̂(x))2√
2πσ2

θ|x

, σ2
θ|x =

1

Eθ|x

[
∂ ln p(θ|x)

∂θ

2
] , (4c)

which means that the a posteriori probability density of θ must be
Gaussian for all x in order for (3a) to become an equality.
It is an update of the result initially released by Shutzenberger
[3] and Van-Trees [5, p73] based on the ”standard” covariance
inequality:

Ex,θ

[(
θ − θ̂ (x)

)2
]
≥ Ex,θ

[
∂ ln p (θ|x)

∂θ

2]−1

,

which becomes an equality if p (θ|x) satisfies for a.e. x ∈ X :

∂ ln p (θ|x)

∂θ
= k

(
θ̂ (x)− θ

)
, k = Ex,θ

[
∂ ln p (θ|x)

∂θ

2]
,

yielding the restricted case where σ2
θ|x does not depend on x:

σ2
θ|x = Eθ|x

[
∂ ln p (θ|x)

∂θ

2]−1

= Ex,θ

[
∂ ln p (θ|x)

∂θ

2]−1

= σ2
θ.

In that case TBCRB = BCRB. If σ2
θ|x is not constant and does

depend on x then TBCRB > BCRB. Thus the usual BCRB can
not be reached in most of the estimation problems.
As a consequence, it seems appropriate to update the definition of
an efficient estimate as follows:

Definition 1: θ̂ (x) is an efficient estimate of θ if its MSE reaches
TBCRB (3a).

Furthermore, the updated class of efficient estimators is given
by (4c).

III. A NOTEWORTHY EXAMPLE
As in introduced in [2, p7], we wish to estimate the variance

of a zero-mean Gaussian random variable. The observation vector
x consists of N i.i.d. Gaussian samples: x ∼ N

(
0, σ2I

)
. The

parameter of interest is θ , σ2. The conditional pdf is:

p (x|θ) = (2π)−
N
2 θ−

N
2 e−

1
θ

xT x
2 , x ∈ RN . (5a)

We assume the a priori pdf follows a beta distribution of the form:

p (θ) = β (a, a)−1 θa−1 (1− θ)a−1 , 0 ≤ θ ≤ 1, (5b)

where: β (a, a) =
∫ 1

0
θa−1 (1− θ)a−1 dθ = Γ (a)2 /Γ (2a), and

Γ (.) is the gamma function, Γ (a) =
∫∞

0
va−1e−vdv. This prior

distribution is symmetric with mean µθ = 1
2

and variance σ2
θ =

1
4(2a+1)

. When a = 1, the pdf is uniform; as the parameter a
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increases, the pdf becomes narrower and, finally, as a → ∞, we
approach the known θ case. Combined with (5a), (5b) yields the
following joint pdf: 0 ≤ θ ≤ 1, x ∈ RN ,

p (x, θ) = (2π)−
N
2 β (a, a)−1 θa−

N
2
−1 (1− θ)a−1 e−

1
θ

xT x
2 .

(5c)

III-A. Known results: BCRB and MAP
From (joint pdf):

− ∂2 ln p (θ|x)

∂2θ
= −∂

2 ln p (x, θ)

∂2θ
=(

a− 1− N

2

)
θ−2 + θ−3xTx + (a− 1) (1− θ)−2 . (6)

Therefore the ”standard” Bayesian Fisher Information Matrix
(BFIM) can be easily computed as:

F = Ex,θ

[
∂ ln p (θ|x)

∂θ

2]
= Ex,θ

[
−∂

2 ln p (θ|x)

∂2θ

]
= Eθ

[
Ex|θ

[
a− 1− N

2

θ2 +
xTx

θ3 +
a− 1

(1− θ)2

]]

where Ex|θ
[
xTx

]
= tr

(
Ex|θ

[
xxT

])
= Nθ. Thus:

F =

(
a− 1 +

N

2

)
Eθ
[
θ−2]+ (a− 1)Eθ

[
(1− θ)−2] ,

where [2, p10]:

Eθ
[
θ−2] =

β (a− 2, a)

β (a, a)
, Eθ

[
(1− θ)−2] =

β (a, a− 2)

β (a, a)
,

leading to:

BCRB =
1

F
, F = (N + 4 (a− 1))

Γ (a− 2) Γ (2a)

2Γ (2a− 2) Γ (a)
. (7a)

Last, if a > 2, then (7a) reduces to:

BCRB =
1

F
, F = (N + 4 (a− 1))

2a− 1

a− 2
, a > 2. (7b)

The MAP estimator,

θ̂MAP (x) = arg max
0≤θ≤1

{p (θ|x)} = arg max
0≤θ≤1

{p (x, θ)} ,

is given by [2, p9]:

N 6= 4 (a− 1) : θ̂MAP (x) =
−δ −

√
δ2 − 4αγ

2α
(8a)

N = 4 (a− 1) : θ̂MAP (x) =
γ

1
2

+ γ
(8b)

where: α = 1− 4(a−1)
N

, δ = −
(

1− 2(a−1)
N

+ γ
)

, γ = xT x
N

.

III-B. New results: p (x), p (θ|x), Eθ|x [θ], MMSE
From [33, 3.471(2.)], ∀µ, β ∈ C | Re {µ} > 0,Re {β} > 0 :

1∫
0

θν−1 (1− θ)µ−1 e−
β
θ dθ = β

ν−1
2 e−

β
2 Γ (µ)W 1−2µ−ν

2
, ν
2

(β) ,

(9)
where Wκ,µ (z) is a Whittaker function [33, §9.22-9.23]. By
applying (9) to:

p (x) = (2π)−
N
2 β (a, a)−1

1∫
0

θ(a−
N
2 )−1 (1− θ)a−1 e−

1
θ

xT x
2 dθ,

one obtains the following closed-form expressions:

p (x) = (10a)

Γ (a)
(

xT x
2

) a−N2 −1

2
e−

xT x
4

√
2π

N
β (a, a)

W N
2
−3a+1

2
,
a−N

2
2

(
xTx

2

)
,

p (θ|x) = (10b)

θa−
N
2
−1 (1− θ)a−1 e−

1
θ

xT x
2

Γ (a)
(

xT x
2

) a−N2 −1

2
e−

xT x
4 W N

2
−3a+1

2
,
a−N

2
2

(
xT x

2

)
Similarly, the minimum MSE (MMSE) estimator is given by:

Eθ|x [θ] =
1∫
0

θp (θ|x) dθ =
1

p (x)

1∫
0

θp (x, θ) dθ

=

1∫
0

θ(a−
N
2

+1)−1 (1− θ)a−1 e−
1
θ

xT x
2 dθ

p (x)
√

2π
N
β (a, a)

=

√
xTx

2

W N
2
−3a

2
,
a−N

2
+1

2

(
xT x

2

)
W N

2
−3a+1

2
,
a−N

2
2

(
xT x

2

) (11)

and the MMSE can be computed as:

MMSE = Ex,θ

[(
Eθ|x [θ]− θ

)2]
= Ex

[
Eθ|x

[
θ2]− Eθ|x [θ]2

]
(12a)

where:

Eθ|x
[
θ2] =

1∫
0

θ2p (θ|x) dθ =
1

p (x)

1∫
0

θ2p (x, θ) dθ

=

1∫
0

θ(a−
N
2

+2)−1 (1− θ)a−1 e−
1
θ

xT x
2 dθ

p (x)
√

2π
N
β (a, a)

=
xTx

2

W N
2
−3a−1

2
,
a−N

2
+2

2

(
xT x

2

)
W N

2
−3a+1

2
,
a−N

2
2

(
xT x

2

) (12b)

Thus:

MMSE = Ex


xTx

2



W N
2
−3a−1

2
,
a−N

2
+2

2

(
xT x

2

)
W N

2
−3a+1

2
,
a−N

2
2

(
xT x

2

) −
W N

2
−3a

2
,
a−N

2
+1

2

(
xT x

2

)
W N

2
−3a+1

2
,
a−N

2
2

(
xT x

2

)


2




.

(12c)
Last, by considering the change of variable t = xT x

2
, one obtains:

MMSE =
Γ (2a)

Γ (a) Γ
(
N
2

) ∞∫
0

 W N
2
−3a−1

2
,
a−N

2
+2

2

(t)

−

(
W N

2
−3a

2
,
a−N

2
+1

2

(t)

)2

W N
2
−3a+1

2
,
a−N

2
2

(t)

 t
a+N

2
−1

2 e−
1
2
tdt. (12d)
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III-C. New results (cont): TBCRB
Since the tighter BCRB is defined by (3a):

TBCRB = Ex

[
Eθ|x

[
∂ ln p (θ|x)

∂θ

2]−1
]
,

Eθ|x

[
∂ ln p (θ|x)

∂θ

2]
= −Eθ|x

[
∂2 ln p (θ|x)

∂2θ

]
,

we consider first the computation of the posterior BFIM Fx =

Eθ|x

[
− ∂

2 ln p(θ|x)

∂2θ

]
, which, from (6), can be expressed as:

Fx =

(
a− 1− N

2

)
Eθ|x

[
θ−2]+ xTxEθ|x

[
θ−3]

+ (a− 1)Eθ|x
[
(1− θ)−2] , (13)

where, by using a similar approach as in (11) and (12b):

Eθ|x
[
θ−2] =

1∫
0

θ(a−
N
2
−2)−1 (1− θ)a−1 e−

1
θ

xT x
2 dθ

p (x)
√

2π
N
β (a, a)

=

(
xTx

2

)−1 W N
2
−3a+3

2
,
a−N

2
−2

2

(
xT x

2

)
W N

2
−3a+1

2
,
a−N

2
2

(
xT x

2

) ,

Eθ|x
[
θ−3] =

1∫
0

θ(a−
N
2
−3)−1 (1− θ)a−1 e−

1
θ

xT x
2 dθ

p (x)
√

2π
N
β (a, a)

=

(
xTx

2

)−3
2
W N

2
−3a+4

2
,
a−N

2
−3

2

(
xT x

2

)
W N

2
−3a+1

2
,
a−N

2
2

(
xT x

2

) ,

Eθ|x
[
(1− θ)−2] =

1∫
0

θ(a−
N
2 )−1 (1− θ)(a−2)−1 e−

1
θ

xT x
2 dθ

p (x)
√

2π
N
β (a, a)

=
Γ (a− 2)

Γ (a)

W N
2
−3a+5

2
,
a−N

2
2

(
xT x

2

)
W N

2
−3a+1

2
,
a−N

2
2

(
xT x

2

) .
Second, as TBCRB = Ex

[
1
Fx

]
, it is judicious to consider once

again the change of variable t = xT x
2

, which leads to:

TBCRB =
Γ (2a)

Γ (a) Γ
(
N
2

)×
∞∫
0

(
W N

2
−3a+1

2
,
a−N

2
2

(t)

)2

t
a+N

2
−1

2 e−
1
2
t


(
a− 1− N

2

)
W N

2
−3a+3

2
,
a−N

2
−2

2

(t) +

2
√
tW N

2
−3a+4

2
,
a−N

2
−3

2

(t) +

(a− 1) Γ(a−2)
Γ(a)

tW N
2
−3a+5

2
,
a−N

2
2

(t)


dt (14)

III-D. Simulation results
To illustrate the known and new results, we ran a

Monte-Carlo simulation for various value of N , i.e. N ∈
{2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}, and a shape param-
eter a = 3 of the symmetric beta prior density (5b). In figure 1 we

Fig. 1. RMSE, BCRB and TBCRB in estimating θ = σ2 versus
N . a = 3.

show the results from 20, 000 trials. The root MSE (RMSE) of the
MAP estimate (8a) and of the MMSE estimate (11) averaged over
trials are plotted as a function of N, as well as the square-roots
of the bounds, i.e. the BCRB (7a) and the TBCRB (14), and the
square-root of the theoretical value of the MMSE (12d). Note that
the TBCRB (14) and the theoretical value of the MMSE (12d) have
been computed with Mathematica, whereas the MAP estimate (8a)
and the MMSE estimate (11) have been simulated with Matlab,
which can not compute the Whittaker function Wκ,µ (z) when
N ≥ 110. As a consequence the comparison of the theoretical
and empirical values of the MMSE is only available for N ≤ 64,
where the two values exhibit a perfect match, which validates (12d).
Figures 1 clearly shows that the MMSE estimate (as well as the
MAP estimate) is efficient in the large sample regime, provided
that the updated definition of efficiency is used, that is relatively to
the TBCRB (14) and not relatively to the BCRB (7a). Moreover,
as expected, as N decreases and the prior information dominates
the observation, both the MAP and the MMSE estimates converge
to the a priori variance (σθ = 0.5/

√
7), and the TBCRB converges

to the BCRB.

IV. CONCLUSION

In [31] it has been shown that any ”standard” BLBs of the
WWF admits a ”tighter” form which upper bounds the ”standard”
form (1). However the potential gain in tightness offered by the
TWWF has not been quantified so far. By providing an illustrative
example of the potential gain in tightness (of course, depending on
the estimation problem), this paper lays the foundation to revisit
some Bayesian estimation problems where the ”standard” BCRB
is not tight in the asymptotic region.
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